首页|Combining machine and deep transfer learning for mediastinal lymph node evaluation in patients with lung cancer

Combining machine and deep transfer learning for mediastinal lymph node evaluation in patients with lung cancer

扫码查看
Background The prognosis and survival of patients with lung cancer are likely to deteriorate with metastasis.Using deep-learning in the detection of lymph node metastasis can facilitate the noninvasive calculation of the likelihood of such metastasis,thereby providing clinicians with crucial information to enhance diagnostic precision and ultimately improve patient survival and prognosis.Methods In total,623 eligible patients were recruited from two medical institutions.Seven deep learning models,namely Alex,GoogLeNet,Resnet18,Resnet101,Vgg16,Vgg19,and MobileNetv3(small),were utilized to extract deep image histological features.The dimensionality of the extracted features was then reduced using the Spearman correlation coefficient(r≥0.9)and Least Absolute Shrinkage and Selection Operator.Eleven machine learning methods,namely Support Vector Machine,K-nearest neighbor,Random Forest,Extra Trees,XGBoost,LightGBM,Naive Bayes,AdaBoost,Gradient Boosting Decision Tree,Linear Regression,and Multilayer Perceptron,were employed to construct classification prediction models for the filtered final features.The diagnostic performances of the models were assessed using various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value.Calibration and decision-curve analyses were also performed.Results The present study demonstrated that using deep radiomic features extracted from Vgg16,in conjunction with a prediction model constructed via a linear regression algorithm,effectively distinguished the status of mediastinal lymph nodes in patients with lung cancer.The performance of the model was evaluated based on various metrics,including accuracy,area under the receiver operating characteristic curve,sensitivity,specificity,positive predictive value,and negative predictive value,which yielded values of 0.808,0.834,0.851,0.745,0.829,and 0.776,respectively.The validation set of the model was assessed using clinical decision curves,calibration curves,and confusion matrices,which collectively demonstrated the model's stability and accuracy.Conclusion In this study,information on the deep radiomics of Vgg16 was obtained from computed tomography images,and the linear regression method was able to accurately diagnose mediastinal lymph node metastases in patients with lung cancer.

Machine learningDeep transfer learningEvaluationMediastinal lymph nodelung cancer patients

Hui XIE、Jianfang ZHANG、Lijuan DING、Tao TAN、Qing LI

展开 >

Department of Radiation Oncology,Affiliated Hospital(Clinical College)of Xiangnan University,Chenzhou 423000,China

Faulty of Applied Sciences,Macao Polytechnic University,Macao 999078,China

Department of Physical examination,Beihu Centers for Disease Control and Prevention,Chenzhou 423000,China

Department of Radiation Oncology,the Third People's Hospital of Chenzhou City,Chenzhou 423000,China

School of Medical Imaging,Laboratory Science and Rehabilitation,Xiangnan University,Chenzhou 423000,China

展开 >

2024

虚拟现实与智能硬件(中英文)

虚拟现实与智能硬件(中英文)

ISSN:
年,卷(期):2024.6(3)