首页|基于加权基因共表达网络分析探讨与脓毒症预后相关的关键差异基因

基于加权基因共表达网络分析探讨与脓毒症预后相关的关键差异基因

扫码查看
目的 基于生物信息学分析研究与脓毒症诊断及预后相关的关键基因.方法 从GEO数据库中下载 5 个脓毒症芯片数据集,通过差异分析和WGCNA方法筛选脓毒症关键差异基因.对差异基因进行GO和KEGG功能富集分析.在STRING数据库中构建并下载PPI网络,使用Cytoscape软件获取关键基因,使用ROC曲线评价基因的诊断价值.使用K-M生存分析和WGCNA寻找预后相关的核心基因.使用CIBERSORT算法进行免疫细胞比例评估.结果 对 3 个研究组数据集进行差异分析,得到 467 个共同差异表达基因(DEGs),WGCNA筛选出 389 个脓毒症相关基因,重叠后得到 189 个脓毒症相关的EDGs.这些差异基因GO主要富集到髓系白细胞活化、细胞因子分泌的正向调节等;KEGG主要富集到Th1 和Th2 细胞分化、Th17 细胞分化等通路上.使用MCC算法筛选出 10 个关键基因,这些基因均在研究组和验证组数据集中,均表现出良好的诊断价值,ROC曲线的AUC均>0.7.使用K-M曲线和WGCNA筛选出3 个与预后相关的核心基因,分别为CCL5、MMP-8 和RETN.MMP8 高、低表达组的差异基因的GO主要富集到细菌的防御反应、参与免疫反应的白细胞活化等;KEGG主要富集到p53 信号通路、FoxO信号通路等.CCL5、MMP-8 和RETN表现出与免疫细胞含量密切相关.结论 通过筛选得到 10 个脓毒症相关的核心差异基因,其中CCL5、MMP8 和RETN可能是脓毒症患者的预后因子.
Exploring the key differential genes associated with sepsis prognosis Based on weighted gene co-expression network analysis
Objective To study the key genes related to the sepsis diagnosis and prognosis based on bioinformatics analysis.Methods Five sepsis microarray datasets were downloaded from the GEO database and screened for sepsis key differential genes by differential analysis and WGCNA methods.The differential genes were analyzed by GO and KEGG functional enrichment.PPI networks were constructed and downloaded from the STRING database,key genes were obtained using Cytoscape software,and the diagnostic value of genes was evaluated using ROC curves.K-M survival analysis and WGCNA were used to find prognosis-related core genes.Immune cell ratio evaluation was performed using the CIBERSORT algorithm.Results Differential analysis of the three study group datasets yielded 467 common differentially expressed genes(DEGs),and WGCNA screened 389 sepsis-associated genes,which overlapped to yield 189 sepsis-associated EDGs.These differentially expressed genes GO were mainly enriched for myeloid leukocyte activation,positive regulation of cytokine secretion,etc.;KEGG were mainly enriched for Th1 and Th2 cell differentiation,Th17 cell differentiation and other pathways.Ten key genes were screened using the MCC algorithm,and these all showed good diagnostic value in both the study and validation group datasets,with ROC AUCs all>0.7.Three core genes associated with prognosis were screened using the K-M curves and WGCNA,namely CCL5,MMP-8,and RETN.GO of the differential genes in the MMP8 high and low expression groups were mainly enriched to the defense response of bacteria,activation of leukocytes involved in the immune response,etc.;KEGG was mainly enriched to the p53 signaling pathway,the FoxO signaling pathway,etc.CCL5,MMP-8,and RETN showed a close correlation with the content of immune cells.Conclusion Ten sepsis-associated core differential genes were obtained by screening,among which CCL5,MMP8 and RETN may be prognostic factors for sepsis patients.

sepsisprognosisbioinformatics analysisWGCNAkey genes

钟树武、李静、张群峰、谢鹏、言彩红、黄治家、陆洲成

展开 >

南华大学附属第二医院,湖南衡阳 421099

南华大学附属南华医院,湖南衡阳 421002

脓毒症 预后 生物信息学分析 WGCNA 关键基因

2024

湘南学院学报(医学版)
湘南学院

湘南学院学报(医学版)

影响因子:0.34
ISSN:1673-498X
年,卷(期):2024.26(4)