首页|基于深度学习语义分割技术的气胸肺萎陷程度自动化计算

基于深度学习语义分割技术的气胸肺萎陷程度自动化计算

扫码查看
在法医临床学鉴定中,当需要确定肺萎陷程度时,通过Mimics软件计算被认为金标准.然而,由于Mimics软件的操作复杂且耗时较长,一些法医工作者仍然倾向于使用目测法、三线法等传统方法进行计算,这种做法可能导致鉴定意见出现一定程度的误差.本研究基于深度学习语义分割技术开发了肺萎陷程度自动化计算模型,并与Mimics软件计算肺萎陷程度的结果比对,以探究深度学习在肺萎陷程度测算中的可行性与可靠性.本研究收集包含气胸诊断的 42 例DICOM格式CT影像数据,每例图像约 350 张,层厚 1 mm,从中随机选取 32 例数据用于模型训练,人工标注 1 943 张图像中胸廓内含气区域,另外 10 例数据由Mimics软件测量肺萎陷程度,用于验证模型训练效果.同时,选取 5 例气胸相关鉴定案例作为外部测试集,通过模型和Mimics软件重建两种方法计算肺萎陷程度,分析两种方法结果的相关性及计算误差.在验证集中,模型计算结果与人工方法的平均误差为 2.4%,平均计算时间为 60.04 s;在测试集中平均误差为 4.4%.本研究构建的模型在气胸所引起的肺萎陷程度自动化测算中表现出潜在的应用价值,为法医临床学中对气胸所致的肺萎陷程度准确定量提供了可靠的技术支撑.
Research on Calculation of Lung Compression Degree in Pneumothorax Using Semantic Segmentation Based on Deep Learning
Calculation of the degree of lung compression by Mimics software remains the"gold standard".In the forensic sphere,due to the complexity of the Mimics software,many people do not utilize this method in forensic practice.They may calculate degree of lung compression by visual observation,represent the result of degree of lung compression by some slicer of CT.These factors will lead to inaccuracies of calculated results.The aim of this study is to develop a model for automatic calculation of lung compression degree based on deep learning semantic segmentation technology,and explore the feasibility of deep learning for lung compression measurement by comparing the results of automatic calculations with Mimics software.In this study,42 cases of the computed tomography(CT)data including pneumothorax diagnosis in DICOM format were collected each cases has about 350 images with a thickness of 1 mm.Among them,32 cases used for training and 10 cases used for validation.The air-containing regions of 1943 images were manually annotated.An additional five chest CT cases were selected for external testing.The degree of lung compression was calculated by both the deep learning model and Mimics software,and the correlation between the results of the two methods and the calculation errors were analyzed.In the validation set,the average error between the deep learning model calculation results and the manual method was 2.4%,and the model processed an average of 356 per case with an average time of 60.04 s,while the average error in the test set was 4.4%.The aforementioned results lead to the following conclusions:The deep learning model constructed in this study has the potential to be applied in the automated measurement of the lung compression degree due to pneumothorax,which can provide a reference for the calculation of the lung compression degree due to pneumothorax in forensic practice.

forensic clinical medicinedeep learningMimics softwarelung compressionthree-dimensional reconstruction

罗帅、刘安杰、张兴涛、占梦军、刘猛、范飞、周宇驰、刘长远、邓振华

展开 >

四川大学华西基础医学与法医学院,成都 610041

四川大学计算机学院,成都 610041

电子科技大学计算机科学与工程学院,成都 611731

宜宾鑫正司法鉴定所,四川 宜宾 644022

展开 >

法医临床学 深度学习 Mimics软件 肺萎陷 三维重建

四川省自然科学基金项目青年基金项目上海市现场物证重点实验室开放课题

24NSFSC67312023XCWZK03

2024

刑事技术
公安部物证鉴定中心

刑事技术

CSTPCD
影响因子:0.315
ISSN:1008-3650
年,卷(期):2024.49(5)
  • 5