首页|浸入运动边界-格子Boltzmann方法4种固含率计算方法对比研究

浸入运动边界-格子Boltzmann方法4种固含率计算方法对比研究

扫码查看
为了达到流固耦合,格子Boltzmann方法(LBM)可采用浸入运动边界法(IMB)实现移动颗粒边界上的无滑移条件.该耦合方式(IMB-LBM)中固含率计算方法对流固耦合计算精度和效率有影响.对常用的固含率4种计算方法,即蒙特卡洛法(MCM)、单元分解法(UDM)、近似多边形法(APM)和闭合边界法(CBM),分别阐述其具体算法,对比了它们的计算精度和计算效率;最后通过圆盘颗粒非连续变形分析方法(DDDA)与IMB-LBM耦合模型下的一个多颗粒沉降流固耦合算例,对比分析了它们在流固耦合计算过程中的耗时.结果表明:1)CBM无误差,MCM和UDM在随机点数取1 000,子单元数取100时误差稳定在1%以下,APM在颗粒直径大于格子长度10倍时,误差小于0.44%;2)MCM和UDM的计算精度及耗时分别与随机点数和子单元数相关,它们的计算耗时大于APM和CBM;3)计算效率上,APM>CBM>UDM>MCM,其中CBM 计算 耗时略微大于APM,APM和UDM计算耗时分别比MCM少2个和1个数量级.该结果可为IMB-LBM耦合模型中固含率计算方法优选提供借鉴.
A comparative study of four solid ratio calculation methods for immersed moving boundary-lattice Boltzmann method
The immersed moving boundary(IMB)can be implemented into the lattice Boltzmann method(LBM)to guarantee non-slip condition at moving particle boundaries,in which fluid-solid coupling can be realized.This IMB-LBM coupled model requires calculating the solid ratio.The calculation method of solid ratio has an effect on the accuracy and efficiency of fluid-solid coupling calculation.Four common methods for calculating solid ratio are Monte Carlo method(MCM),unit decomposition method(UDM),approxi-mate polygon method(APM)and closed boundary method(CBM).In this paper,the specific algorithms of the four methods are described and their calculation accuracy and efficiency are compared.And their time consumption in fluid-solid coupling calculation is compared through modeling a multi-particle settlement flu-id-solid coupling example by disk discontinuous deformation analysis(DDDA)and lattice Boltzmann method(LBM)coupling model.The results reveal that:1)CBM has no error,while the relative error of MCM and UDM is about 1%when the number of random points is 1000 and the number of sub-units is 100.The error of APM is less than 0.44%when the particle diameter is 10 times larger than the lattice length;2)The accuracy and time consumption of MCM and UDM are respectively correlated with the number of ran-dom points and sub-units,and their calculations are more time-consuming than both APM and CBM;3)In calculation efficiency,APM>CBM>UDM>MCM,the time consumption of CBM is a little more than APM,and the time consumption of a single calculation in MCM is 2 orders of magnitude more than that of APM.The time consumption of a single calculation in MCM is 1 orders of magnitude more than that of UDM.These conclusions can provide a reference for the optimization of the calculation method of solid ratio in IMB-LBM coupled model

lattice Boltzmann methodimmersed moving boundary methodsolid ratio calculationapproxi-mate polygon methoddisk particle discontinuous deformation analysis

夏明、邓柳泓、黄刚海、徐远臻

展开 >

湘潭大学岩土力学与工程安全湖南省重点实验室,湖南湘潭 411105

中南大学土木工程学院,湖南长沙 410075

西南交通大学交通隧道工程教育部重点实验室,成都 610031

格子Boltzmann方法 浸入运动边界法 固含率计算 近似多边形法 圆盘颗粒非连续变形分析

国家自然科学基金

52178377

2024

湘潭大学学报(自然科学版)
湘潭大学

湘潭大学学报(自然科学版)

CSTPCD
影响因子:0.403
ISSN:2096-644X
年,卷(期):2024.46(1)
  • 18