首页|基于CNN集成和非均匀量化的家庭负荷预测

基于CNN集成和非均匀量化的家庭负荷预测

扫码查看
负荷的多源不确定性和大小功率分布不均衡是制约家庭负荷短期预测精度的重要因素.为此,该文提出用非均匀量化消解功率偏态分布引起的量化误差大、高功率近似于"异常"样本等问题,融合卷积神经网络(CNN)和集成学习应对负荷多源不确定性导致的负荷规律复杂的问题.首先给出了家庭负荷短期预测框架;然后给出了基于μ律将负荷数据二次量化的方法,使负荷数据近似正态分布,同时将负荷及其相关数据交织成灰度图,便于提取特征数据间隐含的深层非线性关系;接着,面向家庭负荷短期预测,详细设计了 CNN基础学习器、Adaboost协调多个CNN的集成学习算法.对不同温区的实际家庭提前1 h的负荷预测测试表明,该文方法的平分绝对百分比误差(MAPE)、均方程差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)等指标优于已有的先进预测方法.该方法可为公用部门和家庭用户的调度管理、优化控制提供高精度的短期能耗数据.
Household load forecasting based on CNN ensemble and non-uniform quantization
Multi-source uncertainty and unbalanced power distribution of load are the important factors re-stricting the accuracy of household load short-term forecasting.This paper proposed to use non-uniform quantization to solve the problem of large quantization errors caused by skewed power distribution and the problem of high-power approximation to"anomalous"samples;and proposed a combination of convolutional neural network(CNN)and ensemble learning to tackle the complex load patterns resulting from the uncer-tainty of multiple sources,and proposed a combination of CNN and ensemble learning to tackle the complex load patterns resulting from the uncertainty of multiple sources.Firstly,the framework of household load short-term forecasting was given.Subsequently,a μ-law is given to convert the raw load to approximately normally distributed,and multiple data affecting the load are interwoven into grayscale images in order to extract the deep nonlinear relationships implied between the feature data.Then,for short-term prediction of household load,CNN basic learner and ensemble learning algorithm of Adaboost coordinated multiple CNNs were designed in detail.The load forecasting tests on actual households in different temperature zones with 1 hour advance show that the indexes of MAPE,MSE,RMSE and MAE of the method in this paper are better than the existing advanced forecasting methods.This method can provide high-precision short-term energy consumption data for the scheduling management and optimization control of utility and users,steps are as follows.

household load short-term forecastingCNNensemble learningnon-uniform quantization

徐虎、刘新润、周宣、薛雷、苏永新

展开 >

威胜集团有限公司,湖南长沙 410013

湘潭大学 自动化与电子信息学院,湖南湘潭 411105

家庭负荷短期预测 卷积神经网络 集成学习 非均匀量化

国家重点研发计划重点专项

SQ2022YFB2400013

2024

湘潭大学学报(自然科学版)
湘潭大学

湘潭大学学报(自然科学版)

CSTPCD
影响因子:0.403
ISSN:2096-644X
年,卷(期):2024.46(1)
  • 22