首页|三维薛定谔方程组的线性Profile分解

三维薛定谔方程组的线性Profile分解

扫码查看
为了研究线性薛定谔方程组解Strichartz估计的紧性缺失问题,针对H1(R3)× H1(R3)中的三维线性薛定谔方程组的有界解向量序列,使用解序列的Profile分解方法,构造为解向量子列的(1/√hn)U((t-tn)/h2n,(x-xn)/h)类型的Profile分解和.其中,U是线性薛定谔方程组的解向量,在Strichartz范数估计下具有一个很小的余项.首先确定伸缩变换参数序列族,利用傅里叶变换和迭代的思想确定Profile分解族.其次验证了Profile分解和的收敛性,说明了Strichartz范数下余项的收敛性.最后证明了当线性薛定谔方程组的解序列有界时,都可以分解为解向量子列和的形式.
Linear Profile decomposition of three-dimensional Schr?dinger equations
In order to study the defect of compactness problem of the Strichartz estimates for the solution of the linear Schrödinger equations,for the bounded solution vector sequences of the three-dimensional linear Schrödinger equations in H1(R3)× H1(R3),the profile decomposition method of the solution sequences was used to construct a(1/√hn)U((t-tn)/h2n,(x-xn)/hn)-type Profile decomposition sum of the solu-tion vector subsequences.Among them,U is the solution vector of the linear Schrödinger equations,with a small remainder under the estimate of the Strichartz norm.Firstly,the sequence family of stretching trans-formation parameters was determined,and the Profile decomposition family was determined using the ideas of Fourier transform and iteration.Secondly,the convergence of the Profile decomposition sum was verified,the convergence of the remainder under the Strichartz norm was demonstrated.Finally,it was proved that when the solution sequences of the linear Schrödinger equations are bounded,it can be decomposed into a form of the sum of the solution vector subsequences.

Schrödinger equationsProfile decompositionStrichartz estimatesSobolev embeddingFou-rier transform

韩依洋、廖梦兰

展开 >

河海大学理学院,江苏南京 210000

薛定谔方程组 Profile分解 Strichartz估计 Sobolev嵌入 傅里叶变换

江苏省自然科学基金中央高校基本科研业务费专项

BK20221497B230201033

2024

湘潭大学学报(自然科学版)
湘潭大学

湘潭大学学报(自然科学版)

CSTPCD
影响因子:0.403
ISSN:2096-644X
年,卷(期):2024.46(2)
  • 8