首页|PVS-PSO-SVR协同模型及实证分析

PVS-PSO-SVR协同模型及实证分析

扫码查看
针对高维随机变量信息冗余以及主成分分析降维的缺陷,用主变量筛选法对高维随机变量降维,利用提取的主变量建立了支持向量回归机(SVR)模型.对于模型的参数,利用了改进的粒子群算法进行优化选择.构建出主变量筛选(PVS)、粒子群优化(PSO)和SVR的协同模型,并用于葡萄酒的质量预测.实验证明PVS-PSO-SVR协同模型与已有的3种模型(N-CV-SVR模型、PCA-CV-SVR模型,PVS-CV-SVR模型)相比,检查误差有较大的改善,表明PVS-PSO-SVR协同模型泛化能力强、预测结果更有效.
PVS-PSO-SVR cooperative model and its empirical analysis
In response to the redundancy of high-dimensional random variable information and the shortcom-ings of principal component analysis in dimensionality reduction,the principal variable screening method was used to reduce the dimensionality of high-dimensional random variables.A support vector regres-sion machine model was established using the extracted principal variables For the parameters of the model,an improved particle swarm optimization algorithm was used for optimization selection Construct a collabo-rative model of Principal Variable Screening(PVS),Particle Swarm Optimization(PSO),and Support Vector Regression(SVR)for wine quality prediction.Demonstration experiments shown that the PVS-PSO-SVR collaborative model has significantly improved inspection errors compared to the existing three models(N-CV-SVR model,PCA-CV-SVR model,PVS-CV-SVR model),which indicates that the collaborative model of principal variable selection,particle swarm optimization,and support vector re-gression has a stronger generalization ability and more effective prediction results.

principal variable selectionparticle swarm optimizationsupport vector regression(SVR)quality prediction

刘英迪、肖功为、刘琼

展开 >

邵阳学院经济管理学院,湖南邵阳 422000

邵阳学院理学院,湖南邵阳 422000

主变量筛选 粒子群算法 支持向量回归机 质量预测

湖南省自然科学基金湖南省教育厅创新平台开放基金项目湖南省教育厅重点项目

2022JJ3054820K11419A455

2024

湘潭大学学报(自然科学版)
湘潭大学

湘潭大学学报(自然科学版)

CSTPCD
影响因子:0.403
ISSN:2096-644X
年,卷(期):2024.46(3)