首页|基于TSO-LSTM神经网络的股票收益率均值预测模型及其在智能投资中的应用

基于TSO-LSTM神经网络的股票收益率均值预测模型及其在智能投资中的应用

扫码查看
根据股票收益的历史数据,建立数据和模型双驱动的智能资产配置系统,指导股民投资实现收益最大化.使用金枪鱼群优化(TSO)算法寻参的长短期记忆(LSTM)神经网络为分布鲁棒优化投资组合模型提供收益率的均值与协方差矩阵,求解更符合实际情况的分布鲁棒模型得到投资方案.该模型提出的方案在未来前10 d的收益明显高于直接使用历史均值的分布鲁棒模型,亏损天数少于直接使用历史均值的分布鲁棒模型和平均分配资金的方案.同时该文提出的决策系统随着时间的推移,可以通过更新历史数据重新训练LSTM网络,使得模型保持良好的效果.TSO-LSTM神经网络能有效地抓住股票收益率的历史数据特征,实时动态地为投资者提供良好的投资决策.
Mean prediction model of stock return based on TSO-LSTM neural network and its application in intelligent investment
According to the historical data of stock returns,an intelligent asset allocation system driven by data and model is established to guide shareholders to maximize their returns.The LSTM neural network u-sing the TSO algorithm provides the mean and covariance matrix of the yield for the distributed Robust op-timization portfolio model,and solves the distributed Robust model more in line with the actual situation.The return of the model is significantly higher in the first 10 days than the distributed Robust model more in line with the actual situation.The return of the model is significantly higher in the first 10 days than the distributed Robust model that directly uses the historical mean,and the number of losses is less than the distributed Robust model directly using the historical mean and the average distribution of funds.Mean-while,the decision system proposed in this paper can retrain the LSTM network by updating the historical data over time,making the model maintain good results.TSO-LSTM neural network can effectively grasp the historical data characteristics of stock yield and provide investors with good investment decisions in real time.

LSTM neural networkdistributed and Robust investment portfolio optimizationtuna swarm optimization algorithmCVaR model restrain

刘和扬、申飞飞、杨柳

展开 >

湘潭大学数学与计算科学学院,湖南湘潭 411105

LSTM神经网络 分布鲁棒投资组合优化 金枪鱼群优化算法 CVaR模型约束

国家自然科学基金面上项目国家重点研发计划

120713992022YFC330320001

2024

湘潭大学学报(自然科学版)
湘潭大学

湘潭大学学报(自然科学版)

CSTPCD
影响因子:0.403
ISSN:2096-644X
年,卷(期):2024.46(5)