首页|基于迭代自适应的短孔径逆合成孔径雷达成像方法

基于迭代自适应的短孔径逆合成孔径雷达成像方法

扫码查看
针对合成孔径时间短、逆合成孔径雷达数据成像质量差的问题,本研究提出一种基于迭代自适应恢复缺失数据(missing-data iterative adaptive processing approach,MIAA)的短孔径数据的逆合成孔径雷达(inverse synthetic aperture radar,ISAR)超分辨率成像方法.该方法利用MIAA对ISAR回波数据的方位向进行扩展,从而增加数据的方位向长度,提高成像质量.仿真和实测均表明该方法能够有效扩展回波数据的方位向长度,提高短孔径条件下的成像质量.
Imaging Method with Super Resolution for Inverse Synthetic Aperture Radar with Short Aperture Data Based on Iterative Adaptive Processing Approach
For the problem of poor imaging quality of short synthetic aperture time ISAR data,an imaging method with super resolution for ISAR with short aperture data based on missing-data iterative adaptive processing approach(MIAA)is proposed in this paper,which expands the azimuthal data to improve the imaging quality.This method uses MIAA to expand the data in the azimuth direction of the ISAR echo data,so as to increase the azimuth length of the data and enhance the imaging quality.The simulations and measured data both verify that the method can effectively extend the echo data in azimuth and improve the imaging quality under segmental aperture.

radarinverse synthetic aperture radarshort aperturesuper resolutioniterative adaptive approach

张蓓、周波、白昊、石川、王雷钢

展开 >

中国人民解放军63892部队,河南 洛阳 471003

中国人民解放军32201部队,吉林 白城 137000

雷达 逆合成孔径雷达 短孔径 超分辨率成像 迭代自适应方法

2024

系统仿真技术
同济大学

系统仿真技术

CSTPCD
影响因子:0.271
ISSN:1673-1964
年,卷(期):2024.20(1)
  • 13