首页|重塑多尺度神经网络用于人群计数研究

重塑多尺度神经网络用于人群计数研究

扫码查看
在人群计数任务中,仍存在视角畸变和人群分布变化2个问题.本研究在深度神经网络(deep neural networks,DNN)中采用多尺度分支来解决这2个问题.多尺度分支得到的特征一般可以直接融合或通过DNN中的指导信息来间接融合.但这些融合方法都难以处理多尺度密度图中存在的像素级的性能差异.因此,本研究引入专家系统,通过像素级门控网络得到的像素级软权重来分层融合多尺度密度图.在专家系统中,本研究还提出竞争合作策略确保各个尺度下的专家都能发挥作用.多个公开的人群计数数据集上的实验结果表明,本研究方法优于近年人群计数先进方法.
Revisiting Multi-scale Neural Network for Crowd Counting
In crowd counting tasks,there are still issues such as perspective distortions and crowd distribution variations.Multi-scale architecture in deep neural networks(DNNs)is employed to solve these problems.Feature extracted by multi-scale architecture can be either directly fused or fused through the guidance of proxies in DNNs.However,these fusion methods are not capable of dealing with the per-pixel performance discrepancy over multi-scale density maps.Therefore,an expert system is introduced to hierarchically fuse the multi-scale density maps through the pixel-level soft weights obtained from the pixel-level gating network.A competition-cooperation strategy is also proposed to ensure that all experts from all scales can work.Experiments on some public datasets show that the proposed method achieves the state-of-the art performance.

crowd countingmulti-scale neural networkmixture of experts

曹锋、张孝文、李莉、史淼晶

展开 >

浙江省轨道交通运营管理集团有限公司总部,浙江 杭州 310000

同济大学 电子与信息工程学院,上海 201804

人群计数 多尺度神经网络 混合专家机制

2024

系统仿真技术
同济大学

系统仿真技术

CSTPCD
影响因子:0.271
ISSN:1673-1964
年,卷(期):2024.20(2)