首页|反事实因果推断算法在医学诊疗中应用研究现状

反事实因果推断算法在医学诊疗中应用研究现状

扫码查看
医学诊疗场景中变量复杂且因果混淆,机器学习方法不受领域知识约束,但往往只能学习到关联性而无法估计因果关系.因此,为了使机器学习更好地解决医学诊疗问题,需要引入因果推断方法.Judea Pearl提出的因果推断"关联、干预和反事实"三级层次模型中,反事实推断通过比较实际观察和反事实猜想,能够更好地评估特定因素对结果的真实影响,从而减少受因果混淆的影响.本研究对反事实因果推断算法在医学诊疗不同场景的应用研究现状进行综述,阐述用于反事实推断的医学诊疗数据生成研究现状,反事实推断算法在医学诊断中应用研究现状,以及反事实推断算法在医学治疗中的应用研究现状,给出了反事实因果推断算法在医学诊疗中的应用研究方向,在分析现有研究不足的基础上对未来研究方向给出展望.
Current Status of Research on the Application of Counterfactual Causal Inference Algorithms in Medical Diagnosis and Treatment
In medical diagnosis and treatment scenarios,the complexity of variables and causal confounders,combined with machine learning methods often learning only correlations,makes it challenging to estimate causal relationships.To better address these problems using machine learning,it is essential to introduce causal inference methods.Judea Pearl's three-tiered model of causal inference highlights that counterfactual reasoning can more accurately evaluate the true impact of specific factors on outcomes,mitigating causal confounders'effects.This paper reviews the current research on applying counterfactual causal inference algorithms in various medical diagnosis and treatment scenarios.It elaborates on the research status of medical diagnosis and treatment data generation for counterfactual inference,the application research status of counterfactual inference algorithms in medical diagnosis,and the application research status of counterfactual inference algorithms in medical treatment.The research direction of the application of counterfactual causal inference algorithms in medical diagnosis and treatment is given.Based on the analysis of existing research shortcomings,future research directions are proposed.

counterfactual inferencecausal inferencemedical diagnosismedical treatment

范文慧、蒋沅

展开 >

清华大学 自动化系,北京 100084

因果推断 反事实推断 医学诊断 医学治疗

2024

系统仿真技术
同济大学

系统仿真技术

CSTPCD
影响因子:0.271
ISSN:1673-1964
年,卷(期):2024.20(3)