首页|基于激光反射强度特征的渗漏检测方法

基于激光反射强度特征的渗漏检测方法

扫码查看
针对激光雷达反射强度信号对渗漏反应敏感现象,本研究用激光雷达采集混凝土点云数据,构建混凝土结构渗漏检测数据集.为了实现对渗漏区域的自动检测和精确分割,提出一种基于附加强度特征的动态图卷积神经网络模型,增加注意力聚合模块用于聚合坐标特征与强度特征,该模型能够实现点云强度信息之间差异特征的学习.实验结果表明,点云分割的平均交并比和平均准确率分别达到93.5%和98.0%,相较于其他同类算法,本研究提出的方法表现出更为优越的分割检测效果.
Leakage Detection Method Based on Laser Reflection Intensity Characteristics
In this paper,the sensitivity of LiDAR reflection intensity signal to leakage reaction is studied.The point cloud data of concrete is collected by LiDAR,and the leakage detection data set of concrete structure is constructed.In order to realize automatic detection and accurate segmentation of the leakage region,a dynamic graph convolutional neural network model based on additional intensity features is proposed,and an attention aggregation module is added for aggregation of coordinate features and intensity features.This model can realize the learning of difference features between point cloud intensity information.The experimental results show that the average crossover ratio and average accuracy of point cloud segmentation reach 93.5%and 98.0%,respectively.Compared with other similar algorithms,the proposed method shows a better segmentation detection effect.

concreteleakagepoint cloudintensity characteristicsattention aggregation

武斌、陈杨杨、刘溢安、于双玲、赵洁

展开 >

天津城建大学 计算机与信息工程学院,天津 300384

混凝土 渗漏 点云 强度特征 注意力聚合

2024

系统仿真技术
同济大学

系统仿真技术

CSTPCD
影响因子:0.271
ISSN:1673-1964
年,卷(期):2024.20(3)