首页|基于时序知识图谱的智能任务推断方法

基于时序知识图谱的智能任务推断方法

扫码查看
推断对手执行的任务对军事指挥决策至关重要.然而在真实的战争中,一些对手的力量和武器等要素无法被察觉,导致推断对手执行的任务具有挑战性.基于此,本研究提出基于时序知识图谱的任务推断新方法.首先,根据虚拟仿真数据,构建任务时序知识图谱TASK.在图嵌入过程中同时考虑历史和当前的任务模式.将构建的推断模型与基线在TASK数据集和公开数据集YAGO上进行测试,测试结果显示,本研究提出的模型在任务推断上较基线表现更好,在TASK数据集上,所有的动态模型表现比所有的静态模型更好,这可能是由于时序信息在军事任务推断问题上有更重要的作用.
A Temporal Knowledge Graph Based Approach to Task Intelligent Inference
Inferring adversarial tasks is essential in military decision-making.However,some adversarial forces and weapons cannot be detected in real war,making the inference of their tasks challenging.A novel framework for task inference based on temporal knowledge graph reasoning is proposed.Firstly,a temporal task knowledge graph named TASK is constructed from simulated dataset.Information from both historical and concurrent task patterns are considered in the graph embedding process.The proposed model and baselines are tested on TASK and the public dataset YAGO.Experimental results show that the proposed model can yield better performance compared with baselines in task inference and all dynamic models perform better on TASK than static ones,which is likely due to the crucial role of temporal information in military task inference.

task inferencetemporal knowledge graphsituation recognitiongraph embedding

宋晨烨、贺筱媛、郭圣明

展开 >

智能博弈重点实验室,北京 100094

任务推断 时序知识图谱 态势认知 图嵌入

2024

系统仿真技术
同济大学

系统仿真技术

CSTPCD
影响因子:0.271
ISSN:1673-1964
年,卷(期):2024.20(3)