首页|基于卷积神经网络LeNet-5的车牌字符识别研究

基于卷积神经网络LeNet-5的车牌字符识别研究

扫码查看
将卷积神经网络LeNet-5引入到车牌字符识别中.为了适应目前中国车牌字符识别的需要,对传统的卷积神经网络LeNet-5的结构进行了改进,主要是改变输出单元的个数与增加卷积层C5特征图的个数.研究结果表明,改进舌的LeNet-5比传统的LeNet-5的识别率有所提高,识别率达到98.68%.另外,与BP神经网络进行了比较研究,从实验中可以看出在字符识别的正确率和识别速度上都优于BP神经网络.卷积神经网络在车牌识别中具有很好地应用前景.
License Plate Character Recognition Based on Convolutional Neural Network LeNet-5
The application of convolutional neural network LeNet-5 was proposed in license plate character recognition. To fit with the Chinese license plate character recognition problem, the traditional LeNet-5 was modified. The unit number of output layer was changed and the feature map number of C5 layer_was added. Experimental results show that the recognition rate of modified LeNet-5 reaches 98.68% and is better than that of LeNet-5. The results are also compared with the BP neural network, which indicates that the modified LeNet-5 is superior in both recognition rate and speed. This method has a great potential for license plate recognition.

character recognitionlicense plate recognitionconvolutional neural networkLeNet-5

赵志宏、杨绍普、马增强

展开 >

北京交通大学机械与电子控制工程学院,北京,100044

石家庄铁道学院,河北,050043

字符识别 车牌识别 卷积神经网络 LeNet-5

国家杰出青年科学基金教育部科学技术研究重点项目

50625518205019

2010

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCDCSCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2010.22(3)
  • 144
  • 3