首页|宽度-深度融合时频分析的径流智能预测方法

宽度-深度融合时频分析的径流智能预测方法

扫码查看
为解决现有基于LSTM的径流预测模型易陷入局部最优的问题,提出了基于VMD-LSTM-BLS(variational mode decomposition-LSTM-broad learning system)的径流预测模型.将宽度学习系统与LSTM结合,针对径流序列多噪音特点,采用时频分析方法中的变分模态分解,将径流时间序列的一维时域信号变换到二维时频平面,减少噪声对预测结果的影响.仿真结果表明:与基线模型及现有基于LSTM的径流预测模型相比,该模型的预测精度有较为明显的提高.
Runoff Intelligent Prediction Method Based on Broad-deep Fusion Time-frequency Analysis
Broad learning system(BLS)is introduced to tackle the existed disadvantage that LSTM-based runoff prediction model is easy to fall into local optimization.To reduce the influence of noise on the prediction results,the variational mode decomposition(VMD)is adopted to transform the one-dimensional time-domain runoff signal to the two-dimensional time-frequency plane.The runoff prediction model based on VMD-LSTM-BLS is proposed.The simulation results demonstrate that the prediction accuracy of the new model is more significantly improved compared with the baseline model and the existing LSTM-based runoff prediction model.

runoff forecastvariational mode decompositionlong and short-term memory networkbroad learning systemtime-frequency analysisintelligent prediction

韩莹、王乐豪、王淑梅、张翔、罗星星

展开 >

南京信息工程大学 自动化学院,江苏 南京 210044

南京信息工程大学 江苏省大气环境与装备技术协同创新中心,江苏 南京 210044

信江饶河水文水资源检测中心,江西 上饶 334000

径流预测 变分模态分解 长短时记忆网络 宽度学习系统 时频分析 智能预测

国家自然科学基金教育部新农科研究与改革实践

6207613620200251

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(2)
  • 10