首页|基于滑动窗和多块卷积自编码器的故障检测

基于滑动窗和多块卷积自编码器的故障检测

扫码查看
为了进一步提升故障检测性能,充分挖掘时序和隐含特征信息,提出一种基于卷积自编码器的故障检测方法.在对原始信息集进行建模的基础上增加了对累计信息与变化率信息的建模,以增强对隐含信息的挖掘;对重构的3个信息集进行滑动窗采样,基于卷积自编码器进行时序特征提取和建模;将卷积自编码器的决策结果进行贝叶斯融合得到统计量,并用核密度估计的方法确定控制限从而进行故障检测.将该方法进行数值仿真并应用于TE过程,仿真结果验证了所提方法的有效性和检测性能.
Fault Detection Based on Sliding Window and Multiblock Convolutional Autoencoders
In order to further improve the fault detection performance and fully mine the timing and hidden feature information,a fault detection method based on convolutional auto encoder is proposed.On the basis of modeling the original information set,the modeling of cumulative information and rate of change information is added to enhance the mining of implicit information;The three reconstructed information sets are sampled by sliding windows,and time series feature extraction and modeling are performed based on convolutional auto encoders.Bayesian fusion of the decision results of the convolutional auto encoder is performed to obtain the statistics,and the control limit is determined by the method of kernel density estimation for fault detection.The method is numerically simulated and applied in TE process,and the simulation results confirm the effectiveness and detection performance.

fault detectionconvolutional autoencodermultiblock modelingsliding windowBayesian fusion

牟建鹏、熊伟丽

展开 >

江南大学 物联网工程学院,江苏 无锡 214122

江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122

故障检测 卷积自编码器 多块建模 滑动窗 贝叶斯融合

国家自然科学基金国家重点研发计划子课题

617731822018YFC1603705-03

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(2)
  • 18