首页|基于聚类融合的三维流线可视化方法

基于聚类融合的三维流线可视化方法

扫码查看
为解决使用聚类方法实现三维流线可视化时,存在特征提取不全面、可视结果破坏流场连续性、聚类簇划分不稳定导致流线代表性差等问题,提出了基于聚类融合的三维流线可视化方法.该方法由特征间距离度量方法和聚类融合方法两部分组成,将特征间距离和空间距离分别作为流线间的相似度进行聚类,对得到的聚类结果进行加权合并后再划分.将该方法在具有多个不同特征的数据集上进行了实验,并与现有方法进行了定性、定量比较.结果表明,与现有方法相比,该方法能够较好地平衡特征提取和流线分布之间的关系,聚类簇划分的稳定性提高了2%~5%,矢量场重构的精度提高了3%~5%.
3D Streamline Visualization Method Based on Clustering Fusion
In order to solve the problems of incomplete feature extraction,continuity destruction of flow field by visual results,and poor representation of streamline caused by unstable clustering division when the clustering method is used to realize 3D streamline visualization.A 3D streamline visualization method based on clustering fusion is proposed.It consists of a distance measurement method between features and a clustering fusion method,which takes the inter-feature distance and spatial distance as the similarity between streamlines for clustering and then performs weighted merging and subdivision of the obtained clustering result.The method has been tested on data sets with different features and compared qualitatively and quantitatively with the existing methods.The results show that compared with the existing methods,the proposed method can better balance the relationship between feature extraction and streamline distribution,and the stability of clustering division is improved by 2%~5%.The accuracy of vector filed reconstruction is improved by 3%~5%.

flow filed visualizationstreamline visualizationclustering fusionfeature extractionstreamline selection

邵绪强、程雅、金佚钟

展开 >

华北电力大学 计算机系,河北 保定 071003

复杂能源系统智能计算教育部工程研究中心,河北 保定 071003

流场可视化 流线可视化 聚类融合 特征提取 流线选择

国家自然科学基金河北省自然科学基金中央高校基本科研业务费专项

61502168F20205020142021MS095

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(3)
  • 18