首页|带障碍物惩罚因子的多机器人路径规划

带障碍物惩罚因子的多机器人路径规划

扫码查看
轻载环境中,复杂障碍物区域将引起机器人之间局部冲突加剧,进而导致路径求解效率下降,针对该问题,提出轻载环境下带障碍物惩罚因子的多机器人路径规划方法.在基于冲突搜索(conflict-based search,CBS)算法框架的下层单机规划过程中,通过对即将拓展机器人位置的周围障碍物分布类型进行判断,赋予与之对应的障碍物惩罚因子;对路径规划过程中的惩罚因子进行累加,作为单机规划的启发值对路径进行选取;结合CBS算法框架的上层冲突消解策略进行多机器人的路径规划与冲突协调.测试结果表明,在10%障碍物分布的轻载环境中,所提算法的求解时间约为CBS算法的81.38%~83.67%,二叉约束树(constraint tree,CT)拓展量为CBS算法的60.14%~71.66%.在Gazebo中仿真表明,所提方法可减小通过复杂障碍物区域的次数.
Multi-agent Path Planning with Obstacle Penalty Factor
In light load environments,complex obstacle areas will exacerbate local conflicts between agents,leading to a decrease in path solving efficiency.This paper proposes a multi-agent path planning(MAPF)method with obstacle penalty factors in light load environments.First,in the low-level single machine planning process based on the conflict-based search(CBS)algorithm framework,by judging the distribution type of surrounding obstacles that are about to expand the agent's position,corresponding obstacle penalty factors are assigned to them;then,the penalty factors in the path planning process are accumulated and used as the heuristic value of single machine planning to select the path;finally,combined with the upper-level conflict resolution strategy of the CBS algorithm framework,MAPF and conflict coordination are performed.The results show that in a light load environment with a 10%obstacle distribution,the proposed algorithm has a solving time of about 81.38%~83.67%of that of the CBS algorithm,and the expansion amount of the constraint tree(CT)is 60.14%~71.66%of that of the CBS algorithm.Simulation in Gazebo has shown that this method can reduce the number of passes through complex obstacle areas.

light load environmentmulti-agent path finding(MAPF)penalty factorconflict-based search(CBS)constraint tree(CT)

闫星宇、李大焱、王妮娅、张凯翔、毛剑琳

展开 >

昆明理工大学 信息工程与自动化学院,云南 昆明 650500

昆明理工大学 机电工程学院,云南 昆明 650500

轻载环境 多机器人路径规划 惩罚因子 基于冲突搜索算法 约束树

国家自然科学基金云南省重大科技专项计划

62263017202002AC080001

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(3)
  • 18