首页|基于改进目标检测的动态场景SLAM研究

基于改进目标检测的动态场景SLAM研究

扫码查看
针对单目SLAM在动态场景下存在的对极约束误匹配问题,提出一种基于目标检测的动态特征点选择方法,通过在特征提取时剔除SLAM系统前端图像帧中动态特征点,提高SLAM的定位精度.提出了一个改进的目标检测网络,利用重叠面积、距离相似度和余弦相似度构建描述边界框的回归损失函数,实现目标的准确定位,获得当前图像帧中物体特征点范围.判断物体类别,对于标记为动态的物体根据目标检测结果剔除前端图像帧中的动态特征点.根据静态特征点,采用对极约束进行两帧图像间的特征匹配估计位姿,对单目相机运动进行跟踪、建图与闭环检测.通过对目标检测网络的主干进行结构重参数化改进,提升推理过程的速度,保证整体系统运行的实时性.在公开数据集KITTI的11个序列上的实验结果表明:改进后的系统比ORB-SLAM3系统定位精度提升了23.4%,帧率可以达到30 帧/s以上,在保证实时运行的条件下能有效提高动态场景下单目SLAM系统定位精度.
Research on Dynamic Scene SLAM Based on Improved Object Detection
Aiming at the epipolar constraint matching problem of monocular SLAM in dynamic scenes a dynamic feature point selection method based on object detection is proposed,in which the dynamic feature points in the front-end image frame of SLAM system is eliminated during feature extraction to improve the localization accuracy of SLAM.An improved target detection network is proposed to construct a loss function to describe the bounding box by using the overlap area,distance similarity and cosine similarity,which can achieve the accurate localization of target objects and obtain the range of object feature points in the current image frame.The object category is judged in SLAM,and the dynamic feature points in the front-end image frame are rejected according to the target detection result for the objects marked as dynamic.Based on the static feature point results,the epipolar geometry is used for the feature matching between two frames to estimate pose the to carry out the tracking,map building and closed-loop detection of monocular camera motion.The speed of the inference process is improved by the structural reparameterization of the backbone of target detection network to ensure the real-time operation of the overall system.Experimental results on KITTI dataset show that the improved system improves the localization accuracy by 23.4%over ORB-SLAM3 system,and the frame rate can reach more than 30fps.The algorithm can effectively improve the localization accuracy of monocular SLAM system in dynamic scenes under the condition of ensuring the real-time operation.

visual SLAMepipolar geometryfeature matchingobject detectionIoU loss functionstructural reparameterization

史蓝兮、颜文旭、倪宏宇、赵峰

展开 >

江南大学 物联网工程学院,江苏 无锡 214100

国网绍兴供电公司,浙江 绍兴 312000

视觉SLAM 对极约束 特征匹配 目标检测 IoU损失函数 结构重参数化

国家电网浙江省电力公司科技项目

5211SX220003

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(4)
  • 24