首页|层级引导的增强型多目标萤火虫算法

层级引导的增强型多目标萤火虫算法

扫码查看
针对多目标萤火虫算法在求解过程中易产生振荡和聚集现象,导致开发能力较弱、求解精度不佳的问题,提出一种层级引导的增强型多目标萤火虫算法(hierarchical guided enhanced multi-objective firefly algorithm,HGEMOFA).构建层级引导模型,利用非支配排序获得不同层级个体,用优势层个体引导劣势层个体进化,明确引导方向,解决了进化过程中出现的振荡,减少了聚集现象的出现,增强了算法收敛性;引入莱维飞行扰动最优层个体,增强算法的全局搜索能力;每代进化完成后,对当前种群采用变异机制,增强算法的局部开发能力;把变异后的种群和前一代种群合并进行环境选择,筛选出和前一代种群规模相同的子代,避免优势解丢失.实验结果表明:HGEMOFA能有效增强解的收敛性和多样性.
Hierarchical Guided Enhanced Multi-objective Firefly Algorithm
The multi-objective firefly algorithm is easy to produce oscillation and aggregation phenomenon in the solution process,which leads to weak development ability and poor solution accuracy.This paper proposes a hierarchical guided enhanced multi-objective firefly algorithm(HGEMOFA).HGEMOFA builds a hierarchical guidance model,uses non-dominated sorting to obtain different levels of individuals.The individuals in the dominant layer are used to guide the evolution of the individuals in the inferior layer,the guidance direction is clear,the oscillation in the evolution process is solved,the aggregation phenomenon is reduced,and the convergence of the algorithm is enhanced.The Lévy flight is introduced to disturb the optimal layer individuals to enhance the global search ability of the algorithm;After each generation of evolution,the mutation mechanism is adopted for the current population to enhance the local development ability of the algorithm;The mutated population is combined with the previous generation population for environmental selection to screen out offspring with the same population size as the previous generation to avoid loss of dominance solution.The experimental results show that HGEMOFA can effectively enhance the convergence and diversity of solutions.

multi-objective optimizationfirefly algorithmhierarchical guidanceLévy flightmutation

赵嘉、赖智臻、吴润秀、崔志华、王晖

展开 >

南昌工程学院信息工程学院,江西南昌 330099

太原科技大学计算机科学与技术学院,山西太原 030024

多目标优化 萤火虫算法 层级引导 莱维飞行 变异

国家自然科学基金江西省教育厅科技计划江西省教育厅科技计划

52069014GJJ180940GJJ201915

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(5)