首页|基于生产间歇改进Elman的转炉煤气发生量预测

基于生产间歇改进Elman的转炉煤气发生量预测

扫码查看
针对钢铁企业转炉煤气发生量间歇时长波动大,预测精度低的问题,基于生产间歇特征分类,提出基于混沌映射粒子群算法(CPSO)优化Elman神经网络的转炉煤气发生量预测模型(CPSO-Elman).提取转炉煤气发生量时间序列中生产间歇特征,并根据间歇时长进行分类;引入经混沌扰动改进的PSO算法优化ENN的初始权值和阈值,利用非线性更新的惯性权重以平衡全局搜索与局部搜索能力,并在粒子初始化中添加了混沌映射;构建CPSO-Elman转炉煤气发生量组合预测模型;在预测未来时间内间歇时长基础上,预测转炉煤气发生量.仿真结果表明:所提方法在预测精度上比未经过优化而预测的方法提高了5%左右.
Prediction of Converter Gas Generation Based on Intermission Production Improved Elman
Aiming at large fluctuations of intermission and low prediction accuracy in iron and steel industry,based on the classification of intermission characteristics,a converter gas generation predicting model(CPSO-Elman)based on Elman neural network(ENN)optimized by chaotic PSO(CPSO)algorithm is proposed.The intermittent characteristics of converter gas generation time series are extracted and raw data is classified according to intermittent duration.The PSO algorithm improved by chaotic disturbance is introduced to optimize the initial weight and threshold of ENN and inertia weight of nonlinear updating is designed to balance global search ability and local search ability.Construct the combined prediction model of CPSO-Elman converter gas generation.Converter gas generation is predicted on the basis of predicting the intermission in the future time.Simulation results show that prediction accuracy of the proposed method is about 5%higher than that of the method without optimization.

converter gasgeneration predictionPSO algorithmchaotic perturbationElman neural networkintermission classification

费佳杰、吴定会、范俊岩、汪晶

展开 >

江南大学物联网 工程学院,江苏无锡 214122

上海宝信软件股份有限公司,上海 201203

转炉煤气 发生量预测 PSO算法 混沌扰动 Elman神经网络 间歇分类

国家重点研发计划

2020YFB1711102

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(5)