首页|驾驶模拟技术在交通仿真参数标定中的应用研究

驾驶模拟技术在交通仿真参数标定中的应用研究

扫码查看
为解决交通仿真建模过程因缺乏深层次考虑复杂驾驶行为而导致精度不足的问题,提出了基于驾驶模拟技术的交通仿真参数标定方法.以深圳市机荷高速改扩建工程作为研究案例,基于VISSIM构建案例全线交通仿真模型,应用UC-winRoad道路三维建模软件构建高逼真驾驶模拟场景,开展驾驶模拟实验提取复杂场景的典型驾驶行为特征,采用车头间距、行驶速度等跟车行为指标建立仿真参数标定函数,针对标定算法效能问题,通过改进的遗传粒子群算法寻优Wiedemann99跟驰模型的标定参数,以期提升微观交通仿真模型的分析精度与应用效果.结果表明:相比于正交试验与基于交通感知数据迭代寻优的标定方法,该标定方法求解参数标定值误差分别降低47.2%和9.1%,更加符合项目本地化驾驶行为特征,可显著提升交通仿真模型的可信度;相比常规遗传算法、粒子群算法,遗传粒子群算法不仅能找到全局最优解,而且收敛速度比遗传算法快17轮,能同时满足算法有效性与高效率的要求.
Application of Driving Simulation Technology in Calibration of Traffic Simulation Parameters
To address the insufficient accuracy in traffic simulation modeling due to the lack of in-depth consideration of complex driving behaviors,a calibration method for traffic simulation parameters based on driving simulation technology is proposed.The reconstruction and expansion project of Shenzhen Bao'an International Airport Expressway is selected as the case.Using VISSIM simulation software,a comprehensive traffic simulation model of the entire route is constructed,and UC-winRoad software is employed to create the highly realistic driving simulation scenarios.Driving simulation experiments are conducted to extract the typical driving behavior characteristics in complex scenarios.Calibration functions for simulation parameters are established by using the car-following behavior indicators such as headway and driving speed.To address the efficiency of the calibration algorithm,an improved genetic particle swarm optimization algorithm is employed to optimize the calibration parameters of Wiedemann99 car-following model to enhance the analytical precision and application effectiveness of the microscopic traffic simulation model.The results show that,compared to the orthogonal experiments and iterative optimization based on traffic perception data,the proposed calibration method based on driving simulation technology reduces the error in parameter calibration values by 47.2%and 9.1%,respectively,and aligns more closely with the localized driving behaviors,which significantly enhances the credibility of the traffic simulation model.Compared to the conventional genetic algorithms and particle swarm algorithms,the proposed genetic particle swarm algorithm can not only obtain the global optimum but also converge faster by 17 rounds,which can meet the effectiveness and efficiency requirements for the algorithm.

traffic simulationdriving simulationparameter calibrationgenetic & particle swarmcar following behavior

刘诗昆、唐易、刘永红

展开 >

中山大学智能工程学院,广东深圳 518107

广东省智能交通系统重点实验室,广东深圳 518107

深圳市城市交通规划设计研究中心股份有限公司,广东深圳 518057

交通仿真 驾驶模拟 参数标定 遗传粒子群 跟车行为

国家自然科学基金广东省科技计划

419751652023B1212060029

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(6)
  • 10