首页|基于深度强化学习的机器人轴孔装配策略仿真研究

基于深度强化学习的机器人轴孔装配策略仿真研究

扫码查看
针对现有轴孔装配方法存在的依赖于精确的接触状态模型、数据采集困难、采样效率低、安全性差等问题,提出了一种基于DRL的机器人轴孔装配策略仿真研究方法.搭建了基于ROS-Gazebo机器人轴孔装配仿真环境,提出了基于最小二乘法对力/力矩传感器进行重力补偿的方法;基于RL的范式对轴孔装配问题建模,并提出了一种基于SAC(soft actor-critic)算法的机器人轴孔装配方法;通过ROS建立了仿真环境与深度强化学习算法的通信机制.实验结果表明:该算法能够使机器人自主且柔顺地完成轴孔装配任务,并具有较好的泛化性.
Simulation of Robotic Peg-in-hole Assembly Strategy Based on DRL
Aiming at the existing peg-in-hole assembly method problems of dependence on accurate contact state models,difficulties in data acquisition,low sampling efficiency,and poor security,a simulation research method for robot peg-in-hole assembly strategy based on DRL is proposed.A simulation environment of robot peg-in-hole assembly based on ROS-Gazebo is built,and a method of gravity compensation for force/torque sensor based on a least square method is proposed.The reinforcement learning paradigm is employed to model the robot peg-in-hole assembly,and a method based on soft actor-critic(SAC)algorithm is proposed.The communication mechanism between the simulation environment and the deep reinforcement learning algorithm is established through ROS.Simulation experiments show that the proposed SAC algorithm enables robots to accomplish the peg-in-hole assembly task autonomously and compliantly with good generalization ability.

peg-in-hole assemblyDRLcompliance controlassembly strategy simulationROS-Gazebo simulation environment

朱子璐、刘永奎、张霖、王力翚、林廷宇

展开 >

西安电子科技大学机电工程学院,陕西西安 710071

北京航空航天大学自动化科学与电气工程学院,北京 100191

瑞典皇家理工学院生产工程系,斯德哥尔摩25175

北京仿真中心北京市复杂产品先进制造系统工程技术研究中心,北京 100854

展开 >

轴孔装配 DRL 柔顺控制 装配策略仿真 ROS-Gazebo仿真环境

国家自然科学基金

61973243

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(6)
  • 9