首页|基于自动睡眠分期的多模态残差时空融合模型

基于自动睡眠分期的多模态残差时空融合模型

扫码查看
高精度的睡眠分期对于正确评定睡眠情况起到了至关重要的作用.针对现有的卷积网络无法获取生理信号拓扑特征的问题,提出了一种基于多模态残差时空融合的睡眠分期算法.利用短时傅里叶变换和自适应图卷积获取时频图像和时空图像,将其转换为高维的特征向量;通过时频特征和时空特征提取模块实现特征信息流的轻量化交互;使用特征增强融合模块融合特征信息,输出睡眠分期结果.结果表明:该模型具有较高的准确率,在ISRUC-S3数据集上整体准确率为85.3%,F1 分数为 83.8%,Cohen's kappa 为 81%,N1 阶段准确率达到 69.81%.ISRUC-S1 数据集上的实验证明了模型的普遍性.
A Multimodal Residual Spatial-temporal Fusion Model Based on Automatic Sleep Classification
Highly accurate sleep staging plays a crucial role in correctly assessing sleep conditions.Aiming at the problem that the existing convolutional network cannot obtain the topological characteristics of physiological signals,a sleep staging algorithm based on multi-modal residual spatio-temporal fusion is proposed.Time-frequency images and spatio-temporal images are obtained using short-time Fourier transform and adaptive map convolution,which are converted into high-dimensional feature vectors;lightweight interaction of feature information flow is realized through time-frequency feature and spatio-temporal feature extraction modules;the feature enhancement fusion module fuses feature information to outputs sleep staging results.The results show that the model has a high accuracy.On the ISRUC-S3 data set,the overall accuracy is 85.3%,the F1 score is 83.8%,Cohen's kappa is 81%,and the N1 stage accuracy reaches 69.81%.Experiments on the ISRUC-S1 dataset demonstrate the generality of the model.

sleep stagingmulti-view fusiongraph convolutional networkdeep learningelectroencephalogram

郭业才、仝爽

展开 >

南京信息工程大学电子与信息工程学院,江苏南京 210044

无锡学院电子信息工程学院,江苏无锡 214105

睡眠分期 多视图融合 图卷积网络 深度学习 脑电信号

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(9)