首页|基于数字孪生技术的电力变压器碳足迹分析及低碳优化方法仿真研究

基于数字孪生技术的电力变压器碳足迹分析及低碳优化方法仿真研究

扫码查看
电力变压器是变电站内主要的耗能设备,根据我国"碳达峰、碳中和"的目标,准确计算变压器的碳足迹并寻求低碳优化方法具有重要意义.提出了一种电力变压器磁特性数字孪生模型的构建方法,基于三维电磁时谐场有限元分析方法,建立 66kV变电站用型号为SZ11-31.5MVA/66kV电力变压器三维数学模型,在波动负荷工况下得出变压器损耗图谱,构建出变压器数字孪生模型.分析变压器的碳足迹,确定变压器的经济负载系数,并确立变电站最优经济运行方式.提出加装磁分路进行低碳优化,得到额定工况下碳排放降低了 4.75%左右.通过实验推算,模型预测与实际仿真的相对误差小于5%.该方法可为建设数字、低碳和节能型变电站提供科学依据.
Carbon Footprint Analysis and Low-carbon Optimization Method Simulation Study of Power Transformer Based on Digital Twin Technology
Power transformers are the main energy-consuming equipment for substations.According to the goal of"carbon peak,carbon neutralization"in China,it is of great significance to accurately calculate the carbon footprint of transformers and seek low-carbon optimization methods.A method for constructing a digital twin model of power transformer magnetic characteristics is proposed.Based on the three-dimensional electromagnetic time-harmonic field finite element analysis method,a three-dimensional model of SZ11-31.5MVA/66kV power transformer is established.The transformer loss map is obtained under fluctuating load condition,and the transformer digital twin model is constructed.The carbon footprint of the transformer is analyzed,the economic load coefficient of the transformer is determined,and the optimal economic operation mode of the substation is established.The low carbon optimization is carried out by installing magnetic shunt,and the carbon emission is reduced by 4.75%under rated condition.Through experimental calculation,the relative error between the model prediction and the actual simulation is less than 5%.This method can provide a scientific basis for the construction of substation with digital,low carbon and energy saving.

power transformerdigital twinlosscarbon footprintload factorlow-carbon optimization

李冬雪、刘岩、沈博垚、井永腾、马强、刘然

展开 >

国网辽宁省电力有限公司经济技术研究院,辽宁沈阳 110870

沈阳工业大学输变电技术研究所,辽宁沈阳 110016

电力变压器 数字孪生 损耗 碳足迹 负载系数 低碳优化

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(9)