首页|基于DRL的边缘监控任务卸载与资源分配算法

基于DRL的边缘监控任务卸载与资源分配算法

扫码查看
为解决边缘计算环境下密集型监控任务资源受限的问题,提出一种基于DRL的监控任务卸载与资源分配算法.以监控任务时延和识别精度为优化目标,将监控系统中的任务卸载、无线信道分配和图像压缩率的联合决策目标优化求解建模为马尔可夫决策过程;针对无线信道动态性和监控任务随机性引起的训练样本波动性较大,导致算法收敛速度慢和不稳定,采用Transformer注意力机制对多时隙序列的信道状态和监控任务信息进行联合编码.编码后的状态信息能够捕捉多时隙状态序列之间的依赖关系,提升网络状态的表征能力,并以此提高算法鲁棒性.实验结果表明:与传统强化学习算法和启发式算法相比,该算法在降低任务计算时延的同时能够有效提高识别精度.
Edge Surveillance Task Offloading and Resource Allocation Algorithm Based on DRL
For the resource limitation of intensive surveillance tasks in edge computing,a surveillance task offloading and resource allocation algorithm based on DRL is proposed.With the optimization objectives of surveillance task delay and recognition accuracy,the joint decision objective optimization solution of task offloading,wireless channel allocation,and image compression rate was modeled as a Markov decision process.To address the problem of slow and unstable algorithm convergence due to the high volatility of training samples caused by the dynamic nature of wireless channels and the randomness of surveillance tasks,an attention mechanism is used to jointly encode channel states and surveillance task information from multi-slot state sequences.By capturing the dependency relationships between multi-slot state sequences,the representation ability of network state and the robustness of the algorithm are improved.Experimental results show that the proposed algorithm outperforms traditional reinforcement learning algorithm and heuristic algorithm in improving recognition accuracy and reducing task computation delay.

surveillance taskmobile edge computingDRLtask offloadingresource allocationattention mechanism

李超、李贾宝、丁才昌、叶志伟、左方威

展开 >

湖北工业大学计算机学院,湖北武汉 430000

湖北工程学院计算机与信息科学学院,湖北孝感 432000

监控任务 移动边缘计算 深度强化学习 任务卸载 资源分配 注意力机制

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(9)