首页|基于视觉机器人障碍点云映射避障规划及仿真

基于视觉机器人障碍点云映射避障规划及仿真

扫码查看
针对复杂非结构化果园环境下的视觉点云障碍物识别的数据量大、冗杂度高,严重影响采摘作业的实时性及效率,基于点云分割提出了一种点云压缩算法,旨在提升了点云障碍物的识别效率及环境自适应性.采用了基于Informed RRT*及结合逆投影算法Mapping-based Informed RRT*(M-Infarmed RRT*)降维求解采摘路径.通过构建一个强实时性和高鲁棒性的机器人"采样-感知-避障"一体化作业系统,实现了高效的障碍物识别和路径规划.ROS采摘机器人的实验数据证明了本算法的可行性,显著提升了采摘作业的效率.
Visual Robot Obstacle Avoidance Planning and Simulation Using Mapped Point Clouds
In response to the large and complex data volume and high redundancy of visual point cloud obstacle recognition in complex unstructured orchard environments,which severely impacts the real-time performance and efficiency of harvesting operations,a point cloud compression algorithm is proposed based on point cloud segmentation to enhance the efficiency of point cloud obstacle recognition and environmental adaptability.An Informed RRT*based approach is used combined with an inverse projection algorithm,mapping-based informed RRT*(M-Informed RRT*)to solve the harvesting path problem.By constructing a highly real-time and robust integrated robot system for sampling,perception,and obstacle avoidance,efficient obstacle recognition and path planning are achieved.Experimental data from ROS based picking robots demonstrates the feasibility of this algorithm and significantly improves the efficiency of harvesting operations.

binocular visionpath planningpoint cloud segmentationROS simulationpicking obstacle avoidance

霍韩淋、邹湘军、陈燕、周馨瞾、陈明猷、李承恩、潘耀强、唐昀超

展开 >

华南农业大学工程学院,广东广州 510000

佛山市中科农业机器人与智慧农业创新研究院,广东佛山 528000

仲恺农业工程学院城乡建设学院,广东广州 510080

双目视觉 路径规划 点云映射 ROS仿真 采摘避障

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(9)