首页|基于改进人工势场法的无人车路径规划与跟踪控制

基于改进人工势场法的无人车路径规划与跟踪控制

扫码查看
针对无人车在换道超车复杂场景下躲避动态障碍物的工况,提出一种基于改进人工势场法的路径规划算法和基于模型预测控制器的跟踪控制策略.引入安全椭圆理论及预测距离概念调整势场影响区域,通过加入速度势场改变势场函数,解决车辆躲避动态障碍物的问题.以线性三自由度车辆动力学模型为基础,建立包含势场环境的模型预测控制器.通过CarSim/Simulink联合仿真验证算法的有效性.结果表明:该算法可有效解决传统势场法缺陷,提出的换道超车避障控制器对不同车速下的避障车辆跟踪效果良好,最大质心侧偏角均小于1°,前轮转角均在[-10°~10°]合理范围内,车辆能较好完成换道超车操作并且保持稳定性和安全性.
Unmanned Vehicle Path Planning and Tracking Control Based on Improved Artificial Potential Field Method
A path planning algorithm based on improved artificial potential field method and a tracking control strategy based on model predictive controller are proposed for the unmanned vehicle avoiding dynamic obstacles in the complex scene of lane changing and overtaking.The theory of safety ellipse and the concept of prediction distance are introduced to adjust the influence region of potential field.By adding velocity potential field to change potential field function,the problem of vehicle avoiding dynamic obstacles is solved.Based on the linear three-degree-of-freedom vehicle dynamics model,a model prediction controller including potential field environment is established.The effectiveness of the algorithm is verified by CarSim/Simulink co-simulation.The results show that the proposed algorithm can effectively solve the defects of traditional potential field method and the proposed lane change overtaking obstacle avoidance controller has good tracking effect on the obstacle avoidance vehicles at different speeds,in which the maximum side deflection angle of the center of mass is less than 1°,and the front wheel angles are within the reasonable range[-10°~10°],The vehicle can better complete the lane change overtaking operation and maintain stability and safety.

unmanned vehicleimproved artificial potential field methodpath planningtracking controlmodel predictive control

郭明皓、姬鹏、黄海威

展开 >

河北工程大学 机械与装备工程学院,河北 邯郸 056038

昆易电子科技(上海)有限公司,上海 201400

无人车 改进人工势场法 路径规划 跟踪控制 模型预测控制器

河北省引进留学人员河北省高等学校科学技术研究

CL201704ZD2019023

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(10)
  • 10