首页|基于无人机点云地图的地面机器人重定位方法

基于无人机点云地图的地面机器人重定位方法

扫码查看
针对无GNSS(global navigation satellite system)环境下空地协同系统中地面机器人重定位难题及其精度不足的问题,提出了一种基于三维点云地图的由粗到精的重定位算法.通过索引滤波消除高空和地面无效点云的影响,并在提取点云全局特征后引入截断最小二乘估计进行粗定位,采用体素法ICP(iterative closest point)精优化,以获得更精确的定位结果.构建了一种基于空中全局地图的地面机器人定位与自主移动框架,并通过仿真平台实验证明了该框架的可行性,验证了地面机器人重定位算法的实时性和准确性.
Ground Robot Relocation Method Based on UAV Point Cloud Map
In response to the challenge of relocalization in air-ground collaborative systems without the support of Global Navigation Satellite System(GNSS),and the associated issues of insufficient accuracy,a coarse-to-fine relocalization algorithm based on a three-dimensional point cloud map is proposed.The algorithm eliminates the influence of invalid point clouds from the sky and ground through index filtering,performs coarse localization by extracting global features from the point cloud and applying truncated least squares estimation,and then employs voxel-based iterative closest point(ICP)for precise optimization to obtain the more accurate localization results.A ground robot localization and autonomous navigation framework is constructed based on an aerial global map and the feasibility of the framework is validated through experiments on a simulation platform,while the real-time and accuracy of the ground robot relocalization algorithm is verified.

ground robotrelocalizationUAVglobal point cloud mapautonomous navigation

黄宏智、颜凯、刘昌锋、王建文、罗斌

展开 >

武汉大学 测绘遥感信息工程国家重点实验室,湖北 武汉 430070

智能汽车安全技术全国重点实验室,重庆 401133

地面机器人 重定位 无人机 全局点云地图 自主移动

智能汽车安全技术全国重点实验室开放课题

CSTB2022TIAD-DEX0013

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(10)
  • 3