首页|面向低资源的无人机指令意图识别算法及半实物仿真

面向低资源的无人机指令意图识别算法及半实物仿真

扫码查看
在通信网络部分失能或被干扰时,无人机陷入"低资源环境",必须依赖本地硬件资源,面临着计算能力、存储空间和能源供应的限制.针对"低资源环境"下的无人机指令意图识别研究需求,设计并实现了一个应急救灾场景中无人机指令意图识别半实物仿真系统.基于"低资源环境"的机载硬件在环,通过GIS+BIM三维环境建模任务场景,半实物仿真无人机指令意图识别与任务规划.针对核心功能指令意图识别提出了一种新的轻量化算法,基于GraphSAGE的全局句子结构信息抽取与FastText局部语义特征的共同注意力融合机制,优化提升了意图理解预测的准确率和响应速度.在构建的专业无人机指令意图数据集上,半实物仿真验证指令意图识别准确率为0.890 7、时间为58.808 ms,满足实时性要求.
Algorithm and Semi-physical System Simulation for Command Intent Recognition of UAV in Low-resource Environment
When a communication network is partially disabled or disrupted,an UAV is plunged into a"low-resource environment"and must rely on local hardware resources.This situation imposes constraints on computing power,storage capacity,and energy availability.To address the need for command intent recognition in such environments,a semi-physical simulation system for UAV in emergency rescue operations has been designed and implemented.Based on the low resource airborne hardware in the loop,the system simulates UAV command intention recognition and mission planning through GIS+BIM 3D environment modeling task scenarios.A new lightweight algorithm for intent recognition has been proposed,based on the joint attention fusion mechanism of global sentence structure information extraction using GraphSAGE and local semantic features of FastText,which optimizes and improves the accuracy and response speed of intent understanding prediction.On the constructed professional UAV command intent dataset,semi-physical simulation verifies that the accuracy of command intention recognition is 0.890 7 and the time is 58.808 ms,which meets the real-time requirement.

UAVlow-resource environmentscommand intent recognitiontext classificationlightweight algorithmsemi-physical simulation

刘鸿福、付雅晶、张万鹏、张虎

展开 >

国防科技大学智能科学学院,湖南长沙 410073

中国航天科工集团有限公司第三研究院体系对抗与智能信息系统总体部,北京 100074

无人机 低资源环境 指令意图识别 文本分类 轻量化算法 半实物仿真

2024

系统仿真学报
北京仿真中心 中国系统仿真学会

系统仿真学报

CSTPCD北大核心
影响因子:0.551
ISSN:1004-731X
年,卷(期):2024.36(12)