首页|可解释性收益率预测模型

可解释性收益率预测模型

Interpretable Rate of Return Prediction Model

扫码查看
本文针对金融时间序列高噪声、波动性强等特点,提出纳入注意力机制的小波门控循环神经网络(WT-attention-GRU)混合模型,进行收益率序列预测.模型用主成分分析(PCA)构建的投资者情绪指标衡量对市场的影响,选取XGBoost算法(eXtreme Gradient Boosting)筛选并评估预测指标,用小波重构对输入时间序列进行降噪,提高模型的预测精度,使用注意力机制学习输入特征的权重,来衡量输入对输出的影响大小,增加模型的解释性,进一步提升预测精度.最后,本文选择上证50指数、沪深300指数、深证成分指数、上证综合指数近十年的 日交易数据进行实证分析,结果显示,相较于基准模型,WT-attention-GRU提升了预测的准确性,同时对输入特征进行权重学习,可以反映输入特征与 目标变量的依赖关系,提升了模型的可解释性.
Financial time series are high noisy and highly volatile.In this paper,we propose a model incorporating the attention mechanism into a wavelet gated recurrent neural network(WT-attention-GRU)that predicts return rate sequences.By using principal component analysis(PCA),investor sentiment indicators are constructed to measure its impact on the market.Extreme Gradient Boosting algorithm is selected as the filtering and evaluation algorithm in the model.In order to improve the model's accuracy in predicting performance,wavelet reconstruction is used to denoise the input time series.Through the use of attention mechanisms,we can measure the impact of inputs on outputs,improve model interpretability,and further improve prediction accuracy.Finally,this article analyzes the Shanghai Stock Exchange 50 Index,the Shanghai and Shenzhen 300 Index,the Shenzhen Stock Exchange Component Index,and the Shanghai Composite Index for nearly ten-year history of trading day data.Compared with the benchmark model,WT-attention-GRU improves forecast accuracy.By learning input features simultaneously and weighting them,we demonstrate the dependence between input features and target variables,which makes the model more interpretable.

Attention mechanismWaveletGRUPCAExtreme Gradient Boosting

姚远、李艳、张朝阳、赵阳

展开 >

河南大学管理科学与工程研究所,河南开封 475004

注意力机制 小波 GRU PCA XGBoost

国家社会科学基金项目河南省高等学校哲学社会科学基础研究重大项目河南省哲学社会科学规划年度项目

17BJY1942021-JCZD-012022BJJ030

2024

系统工程
湖南省系统工程与管理学会

系统工程

CSTPCD北大核心
影响因子:0.721
ISSN:1001-4098
年,卷(期):2024.42(1)
  • 25