首页|基于自然语言处理的FIDIC银皮书责任追溯混合模型

基于自然语言处理的FIDIC银皮书责任追溯混合模型

FIDIC Silver Book Liability Retroaction Hybrid Model Using Natural Language Processing

扫码查看
建设项目实施阶段,各参与方常需要基于合同文本快速准确地追溯责任主体、规避项目纠纷.然而,冗长复杂的建设合同使得人工追责过程通常耗时易错.针对这一问题,本文基于2017版FIDIC银皮书设计了具有针对性的文本预处理机制以制作数据集,并且在深度学习框架下微调了 BERT模型以提升责任句分类的准确率.在此基础上,本文进一步结合了基于规则的责任主体提取器和模糊检索算法,从而构建了检索灵活、应用稳健的FIDIC银皮书责任追溯混合模型.实证研究进一步证明了所提出模型对于国际EPC合同责任追溯的有效性.
During the implementation stage,parties of construction projects often need to retroact the liability subject based on the contract swiftly and accurately to avoid disputes.However,lengthy and complex construction contracts make this manual process time-consuming and error-prone.To tackle the problem,this paper presents a high-quality dataset through custom-built preprocessing based on the 2017 FIDIC silver book and fine-tunes the BERT-base model under the deep learning framework to increase the accuracy of the sentence-with-liability classifier.In addition,a rule-based liability-subject extractor and fuzzy retrieval algorithm are combined to establish a hybrid NLP model that automates the liability retroact approach using the FIDIC silver book as a basic.The proposed model outperforms previous models with regard to high efficiency,flexible retrieval,and robust application.The empirical study further underpins the effectiveness and effectiveness of the proposed model for contractual liability retroaction for international EPC projects.

NLPBERTText ClassificationHybrid ModelingContract Management

张宏、帅冰

展开 >

浙江大学建筑工程学院,浙江 杭州 310058

自然语言处理 BERT 文本分类 混合建模 合同管理

浙江省"尖兵""领雁"研发攻关计划资助项目

2022C01130

2024

系统工程
湖南省系统工程与管理学会

系统工程

CSTPCD北大核心
影响因子:0.721
ISSN:1001-4098
年,卷(期):2024.42(5)