首页|股票价格与情感的多特征嵌套注意力融合股价预测

股票价格与情感的多特征嵌套注意力融合股价预测

Multi-feature Nested Attention Fusion of Stock Price and Emotion for Stock Price Prediction

扫码查看
针对提高股票价格预测的精确性问题,综合了股市行情与情感信息,最大程度降低干扰项对股民情感判断的负面影响,消除噪声和传言,以提高股票价格预测的准确性.首先,从股市和情感文本系列集选取特征、构建相关指标.其次,利用ARIMA模型生成预测残差数列,处理股票价格时间序列的长期趋势和季节性变化,捕捉序列的随机波动.通过DFAOA-BERT模型提取情感文本特征,构建情感分析模型,对评论进行情感评分或者分类,计算每条评论的投资者情绪指标以进行情感极性判别.最后,将股评的情感极性判别结果输入股市预测模型,形成多特征嵌套注意力融合股价预测模型,探讨投资者情绪与股票收益率和股票价格的关系.实验结果表明,该方法可有效提升预测精度.
In addressing the challenge of enhancing stock price prediction accuracy,this paper proposes a method that employs multi-feature nested attention fusion of stock prices and emotions.It mitigates the negative impacts of interference items on emotional judgment,eliminating noise and rumors.Firstly,features are selected and the relevant indicators are constructed using stock market and emotional text series.Secondly,the traditional time series prediction model ARIMA is utilized to generate a prediction residual sequence,addressing long-term trends and seasonal changes in the stock price time series and capturing random fluctuations.The DFAOA-BERT model is employed to extract emotional text features,construct a sentiment analysis model,and evaluate or classify comments based on sentiment.Finally,the sentiment polarity discrimination results from stock reviews are input into the stock market prediction model,forming a multi-feature nested attention fusion stock price prediction model.This model explores the relationship between investor sentiment and stock returns and prices,aiming to enhance the accuracy of predicting stock price trends.Experimental results indicate that the proposed method effectively improves the accuracy of predicting stock price trends.

Stock PredictionEmotional CharacteristicsARIMABERT

王培培、周小平、陈昕玥

展开 >

上海思博职业技术学院,上海 201300

上海开放大学,上海 200433

上海师范大学,上海 200234

股价预测 情感特征 ARIMA BERT

2024

系统工程
湖南省系统工程与管理学会

系统工程

CSTPCD北大核心
影响因子:0.721
ISSN:1001-4098
年,卷(期):2024.42(6)