首页|区间马田系统及其应用

区间马田系统及其应用

Interval Mahalanobis-Taguchi System and Its Application

扫码查看
针对传统马田系统无法处理区间型数据的问题,设计了一种区间马田系统.区间马田系统的核心是构建尺度化的区间马氏距离,论文首先将区间样本向量分解为上限样本向量和下限样本向量,然后分别计算区间样本的上限马氏距离和下限马氏距离,并将其均值定义为区间马氏距离,最后根据区间马氏距离的性质定义了尺度化的区间马氏距离.为验证区间马田系统的性能,仿真模拟生成6个区间型数据集,并分别对区间马田系统的识别准确率、灵敏度、特异度、G-means和降维率等性能进行验证,验证结果表明:区间马田系统具有较强的线性识别能力、降维能力、不平衡数据处理能力和一定的非线性识别能力,并且其性能对区间长度的变化敏感度较低.最后以返贫识别为例,给出区间马田系统的详细计算步骤,并分别同逻辑回归、决策树、支持向量机、随机森林、朴素贝叶斯、K近邻和神经网络等7种用于贫困识别的模式识别方法进行比较,比较结果表明,区间马田系统的整体识别性能优于上述7种方法,特别是区间马田系统的返贫识别准确率较高,验证了区间马田系统在异常值识别方面的优势.
In order to solve the problem that traditional Mahalanobis-Taguchi system cannot process interval data,an interval Mahalanobis-Taguchi system(IMTS)is proposed.The key of the IMTS is the construction of scaled interval Mahalanobis distance.Firstly,the interval sample vector is decomposed into upper bound sample vector and lower bound sample vector,and then the upper bound Mahalanobis distance and lower bound Mahalanobis distance are calculated respectively.Finally,the mean value is defined as the interval Mahalanobis distance,and the properties of the interval Mahalanobis distance are proved,and the scaled interval Mahalanobis distance is defined according to the property of the interval Mahalanobis distance.Six interval data sets are generated by simulation to verify the performance of the IMTS.The verification results show that the IMTS has strong linear recognition ability,dimension reduction ability,unbalanced data processing ability and certain nonlinear recognition ability,and its performance is less sensitive to the changes of interval length.Finally,the detailed calculation steps of the IMTS are given,and compared with seven pattern recognition methods for poverty recognition,including logistic regression,decision tree,support vector machine,random forest,naive Bayes,K-nearest neighbor and neural network,respectively.The comparison results show that the overall recogni-tion performance of the IMTS is better than the above methods.In particular,the poverty-returning recognition accuracy of the IMTS is higher,which verifies the superiority of the IMTS in outlier recognition.

Mahalanobis-Taguchi SystemInterval Mahalanobis-Taguchi SystemInterval Mahalanobis DistancePoverty-returning Identification

常志朋、顾玉萍

展开 >

安徽工业大学商学院,安徽马鞍山 243002

安徽财经大学管理科学与工程学院,安徽蚌埠 233030

马田系统 区间马田系统 区间马氏距离 返贫识别

2024

系统工程
湖南省系统工程与管理学会

系统工程

CSTPCD北大核心
影响因子:0.721
ISSN:1001-4098
年,卷(期):2024.42(6)