首页|基于随机森林融合的金融机构风险关联影响因素研究

基于随机森林融合的金融机构风险关联影响因素研究

扫码查看
"太关联而不能倒"使得金融机构风险关联及其影响因素成为维护金融稳定的重要问题.本文借鉴随机森林进行基因调控研究的思想,将森林融合和随机置换相结合,提出构建变量间关联网络的方法,探究金融机构风险关联及相关因素的影响关系.所提出的方法能克服传统回归分析、格兰杰因果检验和贝叶斯网络等方法的不足,随机置换的引入提升了模型对变量异质性的解决能力.基于2012-2022年46家中国上市金融机构的实证结果表明,所构建的网络能够清晰识别不同因素对风险关联的直接或间接影响作用,并且揭示了因素的影响路径,从而提供更为系统全面的影响关系刻画结果,表明本文方法在解决该问题上具有适用性,可以为金融监管和风险管理提供有力工具.
Influencing factors of the risk correlation of financial institutions:Evidence from random forest fusion
Being"too interconnected to fail"has made the risk correlation of financial insti-tutions and its influencing factors a crucial issue in maintaining financial stability.Drawing inspiration from gene regulatory research using random forests,this paper proposes a method to construct a network that captures the relations between different indicators,for the purpose of exploring the influences between risk correlation and its related factors.It is achieved by inte-grating forest fusion and random permutation.The proposed method overcomes the limitations of traditional regression analysis,Granger causality test,and Bayesian networks,while the intro-duction of random permutation enhances the model's capability to handle variable heterogeneity.Empirical results based on 46 listed financial institutions in China from 2012 to 2022 demonstrate that the constructed network can identify the direct or indirect impact of different factors on risk correlation and reveal the influence paths of factors.This provides more comprehensive em-pirical evidence of complex relationships,highlighting the applicability of the proposed approach in addressing this issue and potentially offering a useful tool for financial regulation and risk management.

financial institutionsrisk correlationrandom forestrandom permutation

李靖宇、郭湘媛、谢启伟、郑晓龙

展开 >

北京工业大学经济与管理学院,北京 100124

中国科学院 自动化研究所,北京 100190

中国科学院大学人工智能学院,北京 101408

金融机构 风险关联 随机森林 随机置换

科技创新2030——"新一代人工智能"重大项目国家自然科学基金国家自然科学基金北京市教育委员会社科重点项目北京市社会科学基金决策咨询项目

2020AAA01084017220101272225011SZ20221000500422JCC068

2024

系统工程理论与实践
中国系统工程学会

系统工程理论与实践

CSTPCDCSSCI北大核心
影响因子:1.575
ISSN:1000-6788
年,卷(期):2024.44(1)
  • 55