首页|深度不确定环境下的系统仿真方法研究

深度不确定环境下的系统仿真方法研究

扫码查看
复杂决策问题分析经常遭遇超出寻常认知范畴的不确定性,即所谓"深度不确定性".此时,目标系统可能高度未知,且系统行为机理与外部环境复杂多变,仿真实施难度远超常规.如何实现深度不确定环境下的系统仿真已成为系统科学领域的重要研究方向之一.对此,本文首先梳理了相关领域关于不确定性、深度不确定性的理解及认知变迁,提出深度不确定环境下系统仿真的关键特征约束,并分类阐述了现有主流不确定仿真范式的核心思想与实现路径;在此基础上,提出一种数据与模型混合驱动的动态探索性仿真范式,并在交通仿真领域进行方法实例应用,结果表明新方法能够有效提升仿真计算系统对真实系统复杂不确定变化的适应能力.
Research on system simulation approach under deep uncertainty
Complex decision analyses are often faced with the high-level uncertainty beyond the normal range of common understanding,which is so-called"deep uncertainty".Generally,the system characterized with deep uncertainty cannot been or has not been known well,and it usually has many components and mechanisms that would interact in a variety of ways and change over time.Deep uncertainty brings unexpected difficulties to system simulation and forecast.In recent years,the research on the simulation approach under deep uncertainty has been becoming one of the important directions in the field of system science.This paper firstly investigates the state of the art in the concept understanding and its cognition development from uncertainty to deep uncertainty,and then summarizes the key features and constraints for system simulation under deep uncertainty.The current mainstream simulation approaches including their modeling thoughts and implementations are also elaborated by systematically classifying the published literature and outlining main trends in modelling uncertain system.On this basis,a dynamic exploratory simulation approach based on data-and-model hybrid is proposed and applied into traffic simulation and forecast.Simulation experiment results show that this approach is a useful pathway to enhance computing system's adaptability to uncertainties and complex changes of real system.

uncertaintydeep uncertaintysystem simulationdata and model hybrid

王刚桥、邢邗、陈永强、刘奕

展开 >

深圳大学管理学院大数据智能管理与决策研究院,深圳 518060

清华大学安全科学学院,北京 100084

北京大学工学院力学与工程科学系,北京 100871

不确定 深度不确定 系统仿真 数据与模型混合

国家自然科学基金国家自然科学基金国家自然科学基金广东省基础与应用基础研究基金

7200414172174102L21240082019A1515111074

2024

系统工程理论与实践
中国系统工程学会

系统工程理论与实践

CSTPCDCSSCI北大核心
影响因子:1.575
ISSN:1000-6788
年,卷(期):2024.44(2)
  • 66