首页|部分信息和损失厌恶下的最优投资与再保险

部分信息和损失厌恶下的最优投资与再保险

扫码查看
该文研究了具有损失厌恶特征的保险公司在仅拥有部分信息时的最优投资与再保险策略.首先,利用滤波技术将问题进行转化.然后,在期望S型效用最大化准则下,运用鞅方法,偏微分方程,傅里叶变换和逆变换方法得到了最优投资与再保险策略的半解析表达式.最后,利用蒙特卡罗方法进行数值分析.结果表明忽略学习下的最优投资与再保险比例比滤波估计下的更低,而且在参考点水平较高时,相比较最优再保险与通胀指数债券投资比例,忽略学习对最优股票投资比例的影响更显著.另一方面,幂效用下的最优策略比S型效用下的最优策略更加激进,其中最优再保险比例在两种效用函数情形差别最大,这说明心理因素对再保险策略的影响最显著.
Optimal investment and reinsurance under partial information and loss aversion
This paper studies the optimal investment and reinsurance strategy for an loss-aversed insurer under partial information.First,the filtering technique is used to transform the problem.Then,under the expected SS-shaped utility maximization criterion,the semi-analytical expression of optimal investment and reinsurance strategy is derived by using martingale method,partial differential equation,Fourier transform and inverse transform method.Finally,the Monte Carlo method is used in the numerical analysis.The results show that the optimal ratios of investment and reinsurance under ignoring learning are lower than that under filtering estimation.When the reference point level is higher,compared with the ratios of optimal reinsurance and investment in inflation index bond,ignoring learning has a greater effect on the optimal ratio of investment in stock.On the other hand,the optimal strategy under the power utility is more aggressive than the optimal strategy under the S-shaped utility,and the optimal reinsurance ratio has the largest difference under the two types of utility functions,which shows that psychological factors have the most significant impact on the reinsurance strategies.

S-shaped utilitypartial informationinvestmentreinsurance

陈凤娥、季锟鹏、彭幸春

展开 >

武汉理工大学理学院,武汉 430070

S型效用 部分信息 投资 再保险

国家自然科学基金教育部人文社会科学研究项目中央高校基本科研业务费专项

1170143622YJAZH0873120621545

2024

系统工程理论与实践
中国系统工程学会

系统工程理论与实践

CSTPCDCSSCI北大核心
影响因子:1.575
ISSN:1000-6788
年,卷(期):2024.44(3)
  • 34