首页|模糊需求联合订货模型及均分Shapley值成本分摊方法

模糊需求联合订货模型及均分Shapley值成本分摊方法

扫码查看
销售商企业联合订货可以共同承担固定订购费和仓库存储费,是企业降低订货成本、提高利润的有效途径.在实际问题中,市场环境的复杂多变导致企业很难预测需求的精确值.本文用三角模糊数表示需求,研究不允许缺货的销售商企业联合订货三角模糊数EOQ模型,并探讨相应的联合订货成本分摊方法.结合三角模糊数的均值面积度量法,解得联合订货策略及三角模糊数平均成本.三角模糊数减法的不可逆性影响了三角模糊数合作博弈的求解,本文通过定义一组类联盟单调性条件,提出计算三角模糊数均分Shapley值的方法,得出三角模糊数均分Shapley值的计算公式,并证明三角模糊数均分Shapley值满足的重要性质.利用三角模糊数均分Shapley值分摊公共成本,兼顾效率和公平,并通过实例说明模型的实用性及成本分摊方法的有效性.
Joint replenishment model with fuzzy demand and cost allocation approach based on egalitarian Shapley value
Joint replenishment is an effective way for retailers to save costs and increase profits since retailers can share fixed ordering costs and storage costs together.In real situations,it is difficult for retailers to predict the demands accurately due to the complexity of the market environment.Hence,the joint replenishment triangular fuzzy EOQ model without shortage is re-searched,where the demands of retailers are expressed with triangular fuzzy numbers.Then the cooperative game approach to allocate the corresponding joint replenishment costs is discussed.Combining with the measure method of average area of the triangular fuzzy number,we attain the joint replenishment strategy and triangular fuzzy average cost.There is not general method for solving triangular fuzzy cooperative games due to the irreversible subtraction of triangular fuzzy number.Hence,we develop an effective method to compute triangular fuzzy egalitarian Shapley values for a class of triangular fuzzy cooperative games through adding some coalition size monotonicity-like conditions,and the formula of triangular fuzzy egalitarian Shapley value is obtained.Moreover,some important properties of the triangular fuzzy egalitarian Shapley value are proven in detail.The triangular fuzzy egalitarian Shapley value is used to allocate the trian-gular fuzzy public costs since it balances efficiency and fairness.The validity and applicability of the proposed model and the cost allocation approach are demonstrated with a real example.

joint replenishmentcost allocationcooperative gameegalitarian Shapley value

叶银芳、李登峰

展开 >

集美大学工商管理学院,厦门 361021

电子科技大学经济与管理学院,成都 611731

联合订货 成本分摊 合作博弈 均分Shapley值

国家自然科学基金

72001089

2024

系统工程理论与实践
中国系统工程学会

系统工程理论与实践

CSTPCDCSSCI北大核心
影响因子:1.575
ISSN:1000-6788
年,卷(期):2024.44(4)
  • 33