首页|虚假评论网络的识别与特征发现

虚假评论网络的识别与特征发现

扫码查看
为从网络结构特征的角度批量识别日益专业化的虚假购物评论,通过网络行为综合可疑得分和基于组筛的聚类分析快速找到相似的评论者网络,再从消费微观决策的视角比较4类产品真实评论与虚假评论的特征差异,提炼虚假评论的识别规则.结果表明,虚假评论网络存在典型的群组结构特征,与真实评论不同,虚假评论以目标产品为媒介有着非常紧密的联系;在"评论者-产品-评论"所形成的网络拓扑结构中,产品类型是虚假评论网络结构中的核心,决定了虚假评论群组的攻击模式.虚假评论最终表现出来的异质性也与产品类型有关,这意味着根据不同的产品类型设计差异化的虚假评论识别策略可以提高准确率.研究结果为规制虚假评论对网购的负面影响提供了一定参考.
False comments network identification and feature discovery
To identify the increasingly specialized fake shopping reviews in bulk from the perspective of net-work structure characteristics,this paper first identifies similar reviewer networks through a comprehensive suspicious score of network behavior and cluster analysis based on group strainer.It then compares the char-acteristics of real reviews and fake reviews across four types of products from the perspective of consumer micro-decisions to refine the identification rules for fake reviews.The results verify that there is a typical group structure in the fake review network.Unlike real reviews,fake reviews are very closely connected with the tar-get product as the medium.In the network topology formed by"reviewer-product-review",the product type is at the core of the fake review network structure and determines the attack pattern of the fake review group.The final heterogeneity of fake reviews is also related to product types,which means that designing differentiated fake review identification strategies according to different product types can improve the accuracy rate.This paper provides a valuable reference for regulating the negative impact of fake reviews on online shopping.

false commentsproduct typeconsumption decision-making

魏瑾瑞、王若彤、王晗

展开 >

东北财经大学统计学院,辽宁大连 116025

北京师范大学统计学院,北京 100875

虚假评论 产品类别 消费决策

辽宁省社科基金资助项目东北财经大学提升社会服务能力建设专项资助项目

L20BTJ003SF-Y202113

2024

系统工程学报
中国系统工程学会

系统工程学报

CSTPCD北大核心
影响因子:1.192
ISSN:1000-5781
年,卷(期):2024.39(5)