系统工程与电子技术(英文版)2024,Vol.35Issue(3) :599-608.DOI:10.23919/JSEE.2023.000136

Ship recognition based on HRRP via multi-scale sparse preserving method

YANG Xueling ZHANG Gong SONG Hu
系统工程与电子技术(英文版)2024,Vol.35Issue(3) :599-608.DOI:10.23919/JSEE.2023.000136

Ship recognition based on HRRP via multi-scale sparse preserving method

YANG Xueling 1ZHANG Gong 2SONG Hu3
扫码查看

作者信息

  • 1. College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Key Lab of Radar Imaging and Microwave Photonics,Ministry of Education,Nanjing 210016,China;Nanjing Marine Radar Institute,Nanjing 210016,China
  • 2. College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Key Lab of Radar Imaging and Microwave Photonics,Ministry of Education,Nanjing 210016,China
  • 3. Nanjing Marine Radar Institute,Nanjing 210016,China
  • 折叠

Abstract

In order to extract the richer feature information of ship targets from sea clutter,and address the high dimensional data problem,a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP)based on the maxi-mum margin criterion(MMC)is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP).Multi-scale fusion is introduced to capture the local and detailed information in small-scale features,and the global and contour information in large-scale features,offering help to extract the edge information from sea clutter and further improv-ing the target recognition accuracy.The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space.Experimental results on the measured radar data show that the proposed method can effec-tively extract the features of ship target from sea clutter,further reduce the feature dimensionality,and improve target recogni-tion performance.

Key words

ship target recognition/high-resolution range profile(HRRP)/multi-scale fusion kernel sparse preserving projection(MSFKSPP)/feature extraction/dimensionality reduction

引用本文复制引用

基金项目

国家自然科学基金(6227125561871218)

中央高校基本科研业务费专项(3082019NC2019002)

Aeronautical Science Foundation(ASFC-201920007002)

Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements()

出版年

2024
系统工程与电子技术(英文版)
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会 中国系统仿真学会

系统工程与电子技术(英文版)

CSTPCD
影响因子:0.64
ISSN:1004-4132
参考文献量30
段落导航相关论文