系统工程与电子技术(英文版)2024,Vol.35Issue(3) :732-740.DOI:10.23919/JSEE.2024.000060

A dual adaptive unscented Kalman filter algorithm for SINS-based integrated navigation system

LYU Xu MENG Ziyang LI Chunyu CAI Zhenyu HUANG Yi LI Xiaoyong YU Xingkai
系统工程与电子技术(英文版)2024,Vol.35Issue(3) :732-740.DOI:10.23919/JSEE.2024.000060

A dual adaptive unscented Kalman filter algorithm for SINS-based integrated navigation system

LYU Xu 1MENG Ziyang 1LI Chunyu 1CAI Zhenyu 2HUANG Yi 3LI Xiaoyong 3YU Xingkai4
扫码查看

作者信息

  • 1. Department of Precision Instrument,Tsinghua University,Beijing 100084,China
  • 2. College of Mechanical and Power Engineering,Three Gorges University,Yichang 443002,China
  • 3. Unit 91001 of the PLA,Beijing 100161,China
  • 4. School of Control and Computer Engineering,North China Electric Power University,Beijing 100096,China
  • 折叠

Abstract

In this study,the problem of measuring noise pollu-tion distribution by the intertial-based integrated navigation sys-tem is effectively suppressed.Based on nonlinear inertial naviga-tion error modeling,a nested dual Kalman filter framework struc-ture is developed.It consists of unscented Kalman filter(UKF)master filter and Kalman filter slave filter.This method uses non-linear UKF for integrated navigation state estimation.At the same time,the exact noise measurement covariance is esti-mated by the Kalman filter dependency filter.The algorithm based on dual adaptive UKF(Dual-AUKF)has high accuracy and robustness,especially in the case of measurement information interference.Finally,vehicle-mounted and ship-mounted inte-grated navigation tests are conducted.Compared with tradi-tional UKF and the Sage-Husa adaptive UKF(SH-AUKF),this method has comparable filtering accuracy and better filtering stability.The effectiveness of the proposed algorithm is verified.

Key words

Kalman filter/dual-adaptive/integrated navigation/unscented Kalman filter(UKF)/robust

引用本文复制引用

基金项目

中国博士后科学基金(2023M741882)

国家自然科学基金(6210322262273195)

出版年

2024
系统工程与电子技术(英文版)
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会 中国系统仿真学会

系统工程与电子技术(英文版)

CSTPCD
影响因子:0.64
ISSN:1004-4132
参考文献量24
段落导航相关论文