系统工程与电子技术(英文版)2024,Vol.35Issue(5) :1148-1166.DOI:10.23919/JSEE.2024.000073

Intelligent recognition and information extraction of radar complex jamming based on time-frequency features

PENG Ruihui WU Xingrui WANG Guohong SUN Dianxing YANG Zhong LI Hongwen
系统工程与电子技术(英文版)2024,Vol.35Issue(5) :1148-1166.DOI:10.23919/JSEE.2024.000073

Intelligent recognition and information extraction of radar complex jamming based on time-frequency features

PENG Ruihui 1WU Xingrui 2WANG Guohong 3SUN Dianxing 4YANG Zhong 5LI Hongwen2
扫码查看

作者信息

  • 1. College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Qingdao Innovation and Development Center,Harbin Engineering University,Qingdao 266000,China
  • 2. Qingdao Innovation and Development Center,Harbin Engineering University,Qingdao 266000,China
  • 3. Information Fusion Research Institute,Naval Aeronautical University,Yantai 264001,China
  • 4. College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;Information Fusion Research Institute,Naval Aeronautical University,Yantai 264001,China
  • 5. National Key Laboratory of Science and Technology on Vessel Integrated Power System,Naval University of Engineering,Wuhan 430033,China
  • 折叠

Abstract

In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to effi-ciently identify jamming and obtain precise parameter informa-tion,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency dis-tribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jam-ming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spec-trum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under-15 dB SNR,according to simulation and real data verification results.

Key words

complex jamming recognition/time frequency fea-ture/convolutional neural network(CNN)/parameter estimation

引用本文复制引用

基金项目

Shandong Provincial Natural Science Foundation(ZR2020MF015)

Aerospace Technology Group Stability Support Project(ZY0110020009)

出版年

2024
系统工程与电子技术(英文版)
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会 中国系统仿真学会

系统工程与电子技术(英文版)

CSTPCD
影响因子:0.64
ISSN:1004-4132
段落导航相关论文