首页|Low-power system model for quantum entangled photon-pair source

Low-power system model for quantum entangled photon-pair source

扫码查看
The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current workhorse technique for preparing photon pairs involves performing spon-taneous parametric down conversion(SPDC)in bulk nonlinear crystals.However,the current power consumption and cost of preparing entangled photon-pair sources are relatively high,pos-ing challenges to their integration and scalability.In this paper,we propose a low-power system model for the quantum entan-gled photon-pair source based on SPDC theory and phase matching technology.This model allows us to analyze the per-formance of each module and the influence of component cha-racteristics on the overall system.In our experimental setup,we utilize a 5 mW laser diode and a typical type-Ⅱ barium metabo-rate(BBO)crystal to prepare an entangled photon-pair source.The experimental results are in excellent agreement with the model,indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources.This achievement not only contributes to the practical application of quantum entanglement lighting,but also paves the way for the widespread adoption of optical quantum systems in the future.

low-power system modeloptical quantum systementangled photon-pair sourcespontaneous parametric down conversion

FENG Tianxuan、ZHANG Hanyi、FAN Rong、MA Honghao、DONG Mengcheng、LI Lijing

展开 >

School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China

Engineering Training Center,Beihang University,Beijing 102206,China

Beijing Aerospace Automatic Control Institute,Beijing 100854,China

2024

系统工程与电子技术(英文版)
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会 中国系统仿真学会

系统工程与电子技术(英文版)

CSTPCD
影响因子:0.64
ISSN:1004-4132
年,卷(期):2024.35(5)