首页|Anti-off-target control method for video satellite based on potential function

Anti-off-target control method for video satellite based on potential function

扫码查看
Small video satellites have unique advantages of short development cycle,agile attitude maneuver,real-time video imaging.They have broad application prospects in space debris,faulty spacecraft,and other space target detection and tracking.However,when a space target first enters the camera's visual field,it has a relatively large angular velocity relative to the satellite,which makes it easy to deviate from the visual field and cause off-target problems.This paper proposes a novel visual tracking control method based on potential function preventing missed targets in space.Firstly,a circular area in the image plane is designed as a mandatory restricted projection area of the target and a visual tracking controller based on image error.Then,a potential function is designed to ensure continuous and stable tracking of the target after entering the visual field.Finally,the stability of the control is proved using Barbarat's lemma.By setting the same conditions and comparing with the simulation results of the proportion-derivative(PD)control method,the results show that when there is a large relative attitude motion angular velocity between the target and the satellite,the track-ing method based on potential function can ensure that the tar-get does not deviate from the field-of-view during the tracking control process,and the projection of target is controlled to the desired position.The proposed control method is effective in eliminating tracking error and preventing off-target simultane-ously.

small video satellitevisual trackinganti-off-targetattitude controlpotential function

FAN Caizhi、WANG Mengmeng、SONG Chao、ZHONG Zikai、YANG Yueneng

展开 >

College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

Xichang Satellite Launch Center,Xichang 615000,China

2024

系统工程与电子技术(英文版)
中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会 中国系统仿真学会

系统工程与电子技术(英文版)

CSTPCD
影响因子:0.64
ISSN:1004-4132
年,卷(期):2024.35(6)