首页|基于PCA-PSO-LSSVM的综合管廊投资估算方法

基于PCA-PSO-LSSVM的综合管廊投资估算方法

扫码查看
为有效地解决现有综合管廊投资估算方法的预测精度不高,且预测精度易受样本量大小、特征参数冗余或贫缺等问题,构建一种将主成分分析法(PCA)与粒子群算法(PSO)优化最小二乘支持向量机(LSSVM)结合的综合管廊投资估算预测模型.采用PCA对影响综合管廊投资估算的特征参数进行降维,剔除噪声或冗余数据,以贡献率较大的主成分作为LSSVM的输入向量,综合管廊单公里造价作为LSSVM的输出向量;利用PSO对LSSVM的核函数参数σ与惩罚因子参数C进行寻优,建立基于PCA-PSO-LSSVM的综合管廊投资估算预测模型,并对测试集样本进行预测.预测结果显示:PCA-PSO-LSSVM模型平均相对误差为 3.28%,满足投资决策阶段对投资估算预测误差的要求(±10%),且与PCA-LSSVM模型、PSO-LSSVM模型、GA-BP模型和GA-SVM模型相比,预测精度分别提高了 67.29%,70.52%,48.13%和 38.60%.PCA-PSO-LSSVM模型预测精度高,泛化性能优,可作为综合管廊投资估算的有效预测方法.
On Investment Estimation Method of Comprehensive Pipe Gallery Based on PCA-PSO-LSSVM
In order to effectively solve the problems that the existing comprehensive pipeline corridor investment estimation methods are not high in prediction accuracy,and the prediction accuracy is easily affected by sample size,redundancy or lack of feature parameters,a method of Principal Component Analysis(PCA)and Particle Swarm Optimization(PSO)optimized least square support vector machine(LSSVM)combined with a comprehensive pipeline gallery investment estimation forecast model.It uses PCA to reduce the dimensionality of the characteristic parameters that affect the investment estimation of the comprehensive pipe gallery,eliminate noise or redundant data,use the principal component with a larger contribution rate as the input vector of LSSVM,and use the cost per kilometer of the comprehensive pipe gallery as the output vector of LSSVM.It uses PSO to optimize LSSVM's kernel function parameter σ and penalty factor parameter C,establishes a comprehensive pipeline corridor investment estimation prediction model based on PCA-PSO-LSSVM,and predicts the test set samples.The prediction results show that the average relative error of the PCA-PSO-LSSVM model is 3.28%,which meets the requirement of investment estimation prediction error(±10%)in the investment decision-making stage,and is compatible with the PCA-LSSVMmodel,PSO-LSSVMmodel,and GA-BP model.Compared with the GA-SVM model,the prediction accuracy is improved by 67.29%,70.52%,48.13%and 38.60%respectively.The PCA-PSO-LSSVM model has high prediction accuracy and excellent generalization performance.It can be used as an effective prediction method for comprehensive pipeline gallery investment estimation.

comprehensive pipeline corridorinvestment estimationprincipal component analysis methodparticle swarm algorithmleast square support vector machine

宋金华、岳浩

展开 >

河北工业大学 土木与交通学院,天津 300401

综合管廊 投资估算 主成分分析法 粒子群算法 最小二乘支持向量机

2024

湖南科技大学学报(自然科学版)
湖南科技大学

湖南科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.675
ISSN:1672-9102
年,卷(期):2024.39(1)
  • 16