首页|基于改进SSD模型的道路交通标志识别方法

基于改进SSD模型的道路交通标志识别方法

扫码查看
为了帮助智能汽车快速识别前方的交通标志,提升汽车在交通道路上的行驶安全,针对现有技术在识别过程中容易出现误检和漏检的问题,在优化现有SSD(Single Shot MultiBox Detector)目标检测模型的基础上,提出一种新的检测模型Rep-SSD(Re-parametrization,SSD),保证网络的实时性和识别的准确性.为增强骨干网络的特征提取能力,将SSD骨干网络中的卷积层更换为重参数化卷积层,在训练过程加入多分支结构增强网络特征的提取能力,在推理过程中采用重参数化技术简化网络,保持网络的识别速度.为进一步增强改进网络的小目标识别能力,加入 CBAM(Convolutional Block Attention Module)注意力机制,强化网络提取到的特征信息.试验结果表明:在德国交通标志识别数据集GTSRB上,Rep-SSD模型的检测精度达到 84.7%,检测速度(FPS)达到 110 帧每秒,模型具有较好的检测精度和实时性.所提出的Rep-SSD模型为自动驾驶汽车提供了一种实时且准确的交通标志识别方案.
Recognition Method of Road Traffic Signs Based on Improved SSD Model
In order to assist intelligent vehicles in identifying ahead traffic signs rapidly and enhancing the safety of vehicle travel on roads,addressing the issues of misidentification and omission prone to occur in existing technologies during the recognition process,a new detection model,Rep-SSD(Re-parametrization SSD)is proposed based on optimizing the existing SSD(Single Shot MultiBox Detector)object detection model to ensure real-time performance and recognition accuracy.To enhance the feature extraction capability of the backbone network,the convolutional layers in the SSD backbone network are replaced with re-parametrization convolutional layers.A multi-branch structure is incorporated during training to enhance the network's feature extraction capability,and re-parametrization techniques are employed during inference to simplify the network while maintaining recognition speed.To further enhance the small object recognition capability of the improved network,the CBAM(Convolutional Block Attention Module)attention mechanism is introduced to reinforce the feature information extracted by the network.Experimental results demonstrate that on the German Traffic Sign Recognition Benchmark(GTSRB)dataset,the detection accuracy of the Rep-SSD model reaches 84.7%,with a detection speed of 110 frames per second,indicating it has good detection accuracy and real-time performance.The proposed Rep-SSD model provides a real-time and accurate solution for traffic sign recognition in autonomous driving vehicles.

traffic sign recognitionobject detectionre-parametrization convolutionCBAM attention mechanism

徐润权、张林俊、张靖佳、许恩永、何水龙

展开 >

桂林电子科技大学 机电工程学院,广西 桂林 541004

东风柳州汽车有限公司 技术中心,广西 柳州 545005

交通标志牌识别 目标检测 重参数化卷积 CBAM注意力机制

广西壮族自治区创新驱动发展专项广西壮族自治区创新驱动发展专项广西壮族自治区重点研发计划柳州市科技计划

AA22068001AA23062031AB211960292022AAA0102

2024

湖南科技大学学报(自然科学版)
湖南科技大学

湖南科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.675
ISSN:1672-9102
年,卷(期):2024.39(2)
  • 18