首页|基于多渠道融合的智能故障预测技术

基于多渠道融合的智能故障预测技术

Intelligent Fault Prediction Technology Based on Multi-Channel Fusion

扫码查看
近年来,随着大数据和人工智能技术的不断发展,基于日志数据的智能故障预测方法逐渐受到关注.传统的基于日志数据的故障预测方法仅关注单一的需求属性,难以面向多维度预测需求进行适配调整.针对该问题,提出一种多渠道融合的智能故障预测模型Multi-Det,该模型采用机器学习和深度学习相融合的调度方式.通过特征提取和数据融合,面向用户不同属性需求进行系统模型适配,优化特定场景下的故障预测准确性和可靠性.为了验证Multi-Det的有效性,在公开数据集下对多个场景下的需求参数进行了实验对比,结果表明该方法能够有效适配不同故障预测需求,在特定场景下智能调整预测策略,为专业领域设备的维护和管理提供有力支持.
In recent years,with the development of big data and artificial intelligence technology,log data oriented intelligent fault prediction gradually attracts research attention.Conventional fault prediction methods based on log data only focus on a single requirement attribute,making it difficult to adapt to the multi-dimensional requirement prediction.To address this problem,this paper proposes Multi-Det,an intelligent fault prediction model with multi-channel fusion,which designs specific scheduling method that incorporates machine learning and deep learning.Through feature extraction and data fusion,the system model is well adapted to different user requirement attributes to optimize the accuracy and reliability of fault prediction in specific scenarios.To verify the effectiveness of Multi-Det,experimental comparisons of requirement parameters in multiple scenarios are carried out on public datasets.The results indicate that the proposed method can effectively adapt to different fault prediction requirements,intelligently adjust the prediction strategy in specific scenarios,and provide strong support for the maintenance and management of device in specialized fields.

log datafault detectionmulti-channel fusionmachine learningdeep learning

白梦莹、米迅、张霁莹、刘经纬、韩华锦、黄楠

展开 >

天津航海仪器研究所,天津 300131

日志数据 故障检测 多渠道融合 机器学习 深度学习

2023

信息安全与通信保密
中国电子科技集团公司第三十研究所

信息安全与通信保密

影响因子:0.374
ISSN:1009-8054
年,卷(期):2023.(10)
  • 2