首页|基于数据分类的恶意加密流量检测方法

基于数据分类的恶意加密流量检测方法

扫码查看
为提高恶意加密流量的检测精度,针对传统检测方法存在的特征提取不足、区分度较差等问题,提出了一种基于数据分类的检测策略.该模型首先采用K-means方法对流量数据进行分类,然后结合卷积神经网络与双向门控循环单元的深度学习模型,通过优化卷积位置来增强关键特征的提取能力.此方法能够同时捕获流量数据的空间和时间特征,实现对恶意加密流量的二分类检测.实验结果显示,相较于卷积神经网络、长短期记忆网络等单一深度学习模型及支持向量机、逻辑回归等传统机器学习模型,该方法在精确率、召回率和F1值等方面均有提升,准确率达到96.78%.
Malicious Encrypted Traffic Detection Method Based on Data Classification
In order to improve the detection accuracy of malicious encrypted traffic,a detection strategy based on data classification is proposed to address the problems of insufficient feature extraction and poor discrimination in conventional detection methods.First,the K-means method is used to classify the traffic data,and then the deep learning model combining convolutional neural network with bidirectional gated recurrent unit(CNN-Bi GRU)is used to enhance the extraction ability of key features by optimizing the convolution position.This method can capture the spatial and temporal features of traffic data at the same time,and achieve the binary detection of malicious encrypted traffic.Experimental results indicate that compared with single deep learning models such as CNN,LSTM and conventional machine learning models such as SVM and logistic regression,the proposed method has improved precision,recall and F1 score,with an accuracy rate of 96.78%.

cyber securityencrypted malicious trafficfeature selectiondeep learningclustering model

华漫、王昭、庄建勋

展开 >

中国民用航空飞行学院计算机学院,四川广汉 618307

网络安全 加密恶意流量 特征选择 深度学习 聚类模型

2025

信息安全与通信保密
中国电子科技集团公司第三十研究所

信息安全与通信保密

影响因子:0.374
ISSN:1009-8054
年,卷(期):2025.(1)