首页|基于WT-CNN-LSTM混合神经网络的电力系统负荷预测模型

基于WT-CNN-LSTM混合神经网络的电力系统负荷预测模型

扫码查看
随着电力在我国能源占比中的持续提升,电力预测在现代能源管理中具有不可替代的作用.由于电力结构的多元化以及影响因素的复杂化,传统的预测模型在电力负荷预测中存在局限性.本文结合小波变换(WT)与神经网络CNN-LSTM,将WT-CNN-LSTM混合神经网络应用于电力系统的负荷预测,并与传统机器学习模型、时间序列预测模型进行对比,结果表明WT-CNN-LSTM神经网络在电力负荷预测上具有更高的准确性,能够为电力系统运行和规划提供参考依据.
Power System Load Forecasting Model Based on WT-CNN-LSTM Hybrid Neural Network
As the proportion of electricity in China's energy continues to increase,electricity forecasting plays an irreplaceable role in modern energy management.Due to the diversification of the electric power structure and the complexity of influencing factors,the traditional prediction model has limitations in electric load forecasting.This paper combines the wavelet transform WT and neural network CNN-LSTM,and applies the WT-CNN-LSTM hybrid neural network to power system load forecasting,and conducts comparative experiments with the traditional machine learning model and time series forecasting model.The results show that the WT-CNN-LSTM neural network has a higher accuracy in electric load forecasting,and can provide reference basis for the operation and planning of the power system.

Power System Load ForecastingCNN-LSTM Hybrid Neural NetworkWavelet VariationBig Data

陈亮吉、朱晨君

展开 >

南京理工大学,南京 210094

人民数据管理(北京)有限公司,北京 100733

电力系统负荷预测 CNN-LSTM混合神经网络 小波变换 大数据

2024

新型工业化

新型工业化

影响因子:1.155
ISSN:
年,卷(期):2024.14(7)
  • 9