首页|基于YOLOv8的元素定位方法研究

基于YOLOv8的元素定位方法研究

扫码查看
本文提出了一种基于YOLOv8 的元素定位方法,利用计算机视觉技术解决了传统方法的诸多局限。首先,把多梯度融合特征提取(channel-to-pixel,C2f)模块中的Bottleneck模块替换为新的动态蛇形卷积(dynamic snake convolution,DSConv)模块,其能够根据特征自适应学习感兴趣区域;其次,在主干网络增加SE通道注意力机制,能够感知主要目标图像特征;最后,使用Wise-IoU损失函数替代原先的交并比(intersection over union,IoU)损失函数,从而克服梯度消失的问题。通过消融和对比实验,与基线模型相比在精确度、F1 分数和mAP@0。5 分别提升了 6。7%、9。7%、7。8%,在应用进行元素定位时准确率均能获得明显的提升。

李正凤、吴恒洋、张铮

展开 >

上海第二工业大学职业技术教师教育学院 上海 200120

上海第二工业大学计算机与信息工程学院 上海 200120

元素定位 YOLOv8 动态蛇形卷积 注意力机制 损失函数

2025

信息记录材料
全国磁性记录材料信息站

信息记录材料

影响因子:0.246
ISSN:1009-5624
年,卷(期):2025.26(1)